# PaddleOCR Quick Start [TOC] ## 1. 轻量安装 ### 1.0 Environment Preparation 环境配置 python环境、pip安装 ```bash pip3 install --upgrade pip ``` ### 1.1 Install PaddlePaddle2.0 ```bash # If you have cuda9 or cuda10 installed on your machine, please run the following command to install python3 -m pip install paddlepaddle-gpu==2.0.0 -i https://mirror.baidu.com/pypi/simple # If you only have cpu on your machine, please run the following command to install python3 -m pip install paddlepaddle==2.0.0 -i https://mirror.baidu.com/pypi/simple ``` For more software version requirements, please refer to the instructions in [Installation Document](https://www.paddlepaddle.org.cn/install/quick) for operation. ### 1.2 Install PaddleOCR Whl Package ```bash pip install "paddleocr>=2.0.1" # Recommend to use version 2.0.1+ ``` 是否会出现sharply问题? 如果需要使用版面分析功能,还需**安装 Layout-Parser** ```bash pip3 install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl ``` ## 2. 便捷使用 ### 2.1 Use by command line #### 2.1.1 English and Chinese Model * detection classification and recognition ```bash paddleocr --image_dir PaddleOCR/doc/imgs_en/img_12.jpg --use_angle_cls true --lang en ``` Output will be a list, each item contains bounding box, text and recognition confidence ```bash [[[442.0, 173.0], [1169.0, 173.0], [1169.0, 225.0], [442.0, 225.0]], ['ACKNOWLEDGEMENTS', 0.99283075]] [[[393.0, 340.0], [1207.0, 342.0], [1207.0, 389.0], [393.0, 387.0]], ['We would like to thank all the designers and', 0.9357758]] [[[399.0, 398.0], [1204.0, 398.0], [1204.0, 433.0], [399.0, 433.0]], ['contributors whohave been involved in the', 0.9592447]] ...... ``` * 更多whl包使用包括, whl包参数说明: #### 2.1.2 Multi-language Model Paddleocr currently supports 80 languages, which can be switched by modifying the --lang parameter.The specific supported [language](language_abbreviations) can be viewed in the table. ``` bash paddleocr --image_dir ./doc/imgs_en/254.jpg --lang=en ```
The result is a list, each item contains a text box, text and recognition confidence ```text [('PHO CAPITAL', 0.95723116), [[66.0, 50.0], [327.0, 44.0], [327.0, 76.0], [67.0, 82.0]]] [('107 State Street', 0.96311164), [[72.0, 90.0], [451.0, 84.0], [452.0, 116.0], [73.0, 121.0]]] [('Montpelier Vermont', 0.97389287), [[69.0, 132.0], [501.0, 126.0], [501.0, 158.0], [70.0, 164.0]]] [('8022256183', 0.99810505), [[71.0, 175.0], [363.0, 170.0], [364.0, 202.0], [72.0, 207.0]]] [('REG 07-24-201706:59 PM', 0.93537045), [[73.0, 299.0], [653.0, 281.0], [654.0, 318.0], [74.0, 336.0]]] [('045555', 0.99346405), [[509.0, 331.0], [651.0, 325.0], [652.0, 356.0], [511.0, 362.0]]] [('CT1', 0.9988654), [[535.0, 367.0], [654.0, 367.0], [654.0, 406.0], [535.0, 406.0]]] ...... ``` #### 2.1.3 版面分析 ```bash paddleocr --image_dir=../doc/table/1.png --type=structure ``` 1. **返回结果说明** PP-Structure的返回结果为一个dict组成的list,示例如下 ```shell [ { 'type': 'Text', 'bbox': [34, 432, 345, 462], 'res': ([[36.0, 437.0, 341.0, 437.0, 341.0, 446.0, 36.0, 447.0], [41.0, 454.0, 125.0, 453.0, 125.0, 459.0, 41.0, 460.0]], [('Tigure-6. The performance of CNN and IPT models using difforen', 0.90060663), ('Tent ', 0.465441)]) } ] ``` dict 里各个字段说明如下 | 字段 | 说明 | | ---- | ------------------------------------------------------------ | | type | 图片区域的类型 | | bbox | 图片区域的在原图的坐标,分别[左上角x,左上角y,右下角x,右下角y] | | res | 图片区域的OCR或表格识别结果。
表格: 表格的HTML字符串;
OCR: 一个包含各个单行文字的检测坐标和识别结果的元组 | 2. **参数说明** | 字段 | 说明 | 默认值 | | --------------- | ---------------------------------------- | -------------------------------------------- | | output | excel和识别结果保存的地址 | ./output/table | | table_max_len | 表格结构模型预测时,图像的长边resize尺度 | 488 | | table_model_dir | 表格结构模型 inference 模型地址 | None | | table_char_type | 表格结构模型所用字典地址 | ../ppocr/utils/dict/table_structure_dict.txt | 大部分参数和paddleocr whl包保持一致,见 [whl包文档](../doc/doc_ch/whl.md) 运行完成后,每张图片会在`output`字段指定的目录下有一个同名目录,图片里的每个表格会存储为一个excel,图片区域会被裁剪之后保存下来,excel文件和图片名名为表格在图片里的坐标。 ### 2.2 Python脚本使用 #### 2.2.1 中英文与多语言使用 paddleocr whl包会自动下载ppocr轻量级模型作为默认模型,可以根据第3节**自定义模型**进行自定义更换。 * 检测+方向分类器+识别全流程 ```python from paddleocr import PaddleOCR, draw_ocr # Paddleocr目前支持中英文、英文、法语、德语、韩语、日语,可以通过修改lang参数进行切换 # 参数依次为`ch`, `en`, `french`, `german`, `korean`, `japan`。 ocr = PaddleOCR(use_angle_cls=True, lang="ch") # need to run only once to download and load model into memory img_path = 'Path/to/Your/Img/11.jpg' result = ocr.ocr(img_path, cls=True) for line in result: print(line) # 显示结果 from PIL import Image image = Image.open(img_path).convert('RGB') boxes = [line[0] for line in result] txts = [line[1][0] for line in result] scores = [line[1][1] for line in result] im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/fonts/simfang.ttf') im_show = Image.fromarray(im_show) im_show.save('result.jpg') ``` 结果是一个list,每个item包含了文本框,文字和识别置信度 ```bash [[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]], ['纯臻营养护发素', 0.964739]] [[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]], ['产品信息/参数', 0.98069626]] [[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]], ['(45元/每公斤,100公斤起订)', 0.9676722]] ...... ``` 结果可视化
#### 2.2.2 版面分析使用