# Training layout-parse [1. Installation](#Installation) ​ [1.1 Requirements](#Requirements) ​ [1.2 Install PaddleDetection](#Install_PaddleDetection) [2. Data preparation](#Data_reparation) [3. Configuration](#Configuration) [4. Training](#Training) [5. Prediction](#Prediction) [6. Deployment](#Deployment) ​ [6.1 Export model](#Export_model) ​ [6.2 Inference](#Inference) ## 1. Installation ### 1.1 Requirements - PaddlePaddle 2.1 - OS 64 bit - Python 3(3.5.1+/3.6/3.7/3.8/3.9),64 bit - pip/pip3(9.0.1+), 64 bit - CUDA >= 10.1 - cuDNN >= 7.6 ### 1.2 Install PaddleDetection ```bash # Clone PaddleDetection repository cd git clone https://github.com/PaddlePaddle/PaddleDetection.git cd PaddleDetection # Install other dependencies pip install -r requirements.txt ``` For more installation tutorials, please refer to: [Install doc](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/docs/tutorials/INSTALL_cn.md) ## 2. Data preparation Download the [PubLayNet](https://github.com/ibm-aur-nlp/PubLayNet) dataset ```bash cd PaddleDetection/dataset/ mkdir publaynet # execute the command,download PubLayNet wget -O publaynet.tar.gz https://dax-cdn.cdn.appdomain.cloud/dax-publaynet/1.0.0/publaynet.tar.gz?_ga=2.104193024.1076900768.1622560733-649911202.1622560733 # unpack tar -xvf publaynet.tar.gz ``` PubLayNet directory structure after decompressing : | File or Folder | Description | num | | :------------- | :----------------------------------------------- | ------- | | `train/` | Images in the training subset | 335,703 | | `val/` | Images in the validation subset | 11,245 | | `test/` | Images in the testing subset | 11,405 | | `train.json` | Annotations for training images | 1 | | `val.json` | Annotations for validation images | 1 | | `LICENSE.txt` | Plaintext version of the CDLA-Permissive license | 1 | | `README.txt` | Text file with the file names and description | 1 | For other datasets,please refer to [the PrepareDataSet]((https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/docs/tutorials/PrepareDataSet.md) ) ## 3. Configuration We use the `configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml` configuration for training,the configuration file is as follows ```bash _BASE_: [ '../datasets/coco_detection.yml', '../runtime.yml', './_base_/ppyolov2_r50vd_dcn.yml', './_base_/optimizer_365e.yml', './_base_/ppyolov2_reader.yml', ] snapshot_epoch: 8 weights: output/ppyolov2_r50vd_dcn_365e_coco/model_final ``` The `ppyolov2_r50vd_dcn_365e_coco.yml` configuration depends on other configuration files, in this case: - coco_detection.yml:mainly explains the path of training data and verification data - runtime.yml:mainly describes the common parameters, such as whether to use the GPU and how many epoch to save model etc. - optimizer_365e.yml:mainly explains the learning rate and optimizer configuration - ppyolov2_r50vd_dcn.yml:mainly describes the model and the network - ppyolov2_reader.yml:mainly describes the configuration of data readers, such as batch size and number of concurrent loading child processes, and also includes post preprocessing, such as resize and data augmention etc. Modify the preceding files, such as the dataset path and batch size etc. ## 4. Training PaddleDetection provides single-card/multi-card training mode to meet various training needs of users: * GPU single card training ```bash export CUDA_VISIBLE_DEVICES=0 #Don't need to run this command on Windows and Mac python tools/train.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml ``` * GPU multi-card training ```bash export CUDA_VISIBLE_DEVICES=0,1,2,3 python -m paddle.distributed.launch --gpus 0,1,2,3 tools/train.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml --eval ``` --eval: training while verifying * Model recovery training During the daily training, if training is interrupted due to some reasons, you can use the -r command to resume the training: ```bash export CUDA_VISIBLE_DEVICES=0,1,2,3 python -m paddle.distributed.launch --gpus 0,1,2,3 tools/train.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml --eval -r output/ppyolov2_r50vd_dcn_365e_coco/10000 ``` Note: If you encounter "`Out of memory error`" , try reducing `batch_size` in the `ppyolov2_reader.yml` file prediction ## 5. Prediction Set parameters and use PaddleDetection to predict: ```bash export CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml --infer_img=images/paper-image.jpg --output_dir=infer_output/ --draw_threshold=0.5 -o weights=output/ppyolov2_r50vd_dcn_365e_coco/model_final --use_vdl=Ture ``` `--draw_threshold` is an optional parameter. According to the calculation of [NMS](https://ieeexplore.ieee.org/document/1699659), different threshold will produce different results, ` keep_top_k ` represent the maximum amount of output target, the default value is 10. You can set different value according to your own actual situation。 ## 6. Deployment Use your trained model in Layout Parser ### 6.1 Export model n the process of model training, the model file saved contains the process of forward prediction and back propagation. In the actual industrial deployment, there is no need for back propagation. Therefore, the model should be translated into the model format required by the deployment. The `tools/export_model.py` script is provided in PaddleDetection to export the model. The exported model name defaults to `model.*`, Layout Parser's code model is `inference.*`, So change [PaddleDetection/ppdet/engine/trainer. Py ](https://github.com/PaddlePaddle/PaddleDetection/blob/b87a1ea86fa18ce69e44a17ad1b49c1326f19ff9/ppdet/engine/trainer.py# L512) (click on the link to see the detailed line of code), change 'model' to 'inference'. Execute the script to export model: ```bash python tools/export_model.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml --output_dir=./inference -o weights=output/ppyolov2_r50vd_dcn_365e_coco/model_final.pdparams ``` The prediction model is exported to `inference/ppyolov2_r50vd_dcn_365e_coco` ,including:`infer_cfg.yml`(prediction not required), `inference.pdiparams`, `inference.pdiparams.info`,`inference.pdmodel` More model export tutorials, please refer to:[EXPORT_MODEL](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/deploy/EXPORT_MODEL.md) ### 6.2 Inference `model_path` represent the trained model path, and layoutparser is used to predict: ```bash import layoutparser as lp model = lp.PaddleDetectionLayoutModel(model_path="inference/ppyolov2_r50vd_dcn_365e_coco", threshold=0.5,label_map={0: "Text", 1: "Title", 2: "List", 3:"Table", 4:"Figure"},enforce_cpu=True,enable_mkldnn=True) ``` *** More PaddleDetection training tutorials,please reference:[PaddleDetection Training](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/docs/tutorials/GETTING_STARTED_cn.md) ***