# Visual Studio 2019 Community CMake 编译指南 PaddleOCR在Windows 平台下基于`Visual Studio 2019 Community` 进行了测试。微软从`Visual Studio 2017`开始即支持直接管理`CMake`跨平台编译项目,但是直到`2019`才提供了稳定和完全的支持,所以如果你想使用CMake管理项目编译构建,我们推荐你使用`Visual Studio 2019`环境下构建。 ## 前置条件 * Visual Studio 2019 * CUDA 10.2,cudnn 7+ (仅在使用GPU版本的预测库时需要) * CMake 3.0+ 请确保系统已经安装好上述基本软件,我们使用的是`VS2019`的社区版。 **下面所有示例以工作目录为 `D:\projects`演示**。 ### Step1: 下载PaddlePaddle C++ 预测库 paddle_inference PaddlePaddle C++ 预测库针对不同的`CPU`和`CUDA`版本提供了不同的预编译版本,请根据实际情况下载: [C++预测库下载列表](https://paddleinference.paddlepaddle.org.cn/user_guides/download_lib.html#windows) 解压后`D:\projects\paddle_inference`目录包含内容为: ``` paddle_inference ├── paddle # paddle核心库和头文件 | ├── third_party # 第三方依赖库和头文件 | └── version.txt # 版本和编译信息 ``` ### Step2: 安装配置OpenCV 1. 在OpenCV官网下载适用于Windows平台的3.4.6版本, [下载地址](https://sourceforge.net/projects/opencvlibrary/files/3.4.6/opencv-3.4.6-vc14_vc15.exe/download) 2. 运行下载的可执行文件,将OpenCV解压至指定目录,如`D:\projects\opencv` 3. 配置环境变量,如下流程所示 - 我的电脑->属性->高级系统设置->环境变量 - 在系统变量中找到Path(如没有,自行创建),并双击编辑 - 新建,将opencv路径填入并保存,如`D:\projects\opencv\build\x64\vc14\bin` ### Step3: 使用Visual Studio 2019直接编译CMake 1. 打开Visual Studio 2019 Community,点击`继续但无需代码` ![step2](https://paddleseg.bj.bcebos.com/inference/vs2019_step1.png) 2. 点击: `文件`->`打开`->`CMake` ![step2.1](https://paddleseg.bj.bcebos.com/inference/vs2019_step2.png) 选择项目代码所在路径,并打开`CMakeList.txt`: ![step2.2](https://paddleseg.bj.bcebos.com/inference/vs2019_step3.png) 3. 点击:`项目`->`CMake设置` ![step3](https://paddleseg.bj.bcebos.com/inference/vs2019_step4.png) 4. 分别设置编译选项指定`CUDA`、`CUDNN_LIB`、`OpenCV`、`Paddle预测库`的路径 三个编译参数的含义说明如下(带`*`表示仅在使用**GPU版本**预测库时指定, 其中CUDA库版本尽量对齐): | 参数名 | 含义 | | ---- | ---- | | *CUDA_LIB | CUDA的库路径 | | *CUDNN_LIB | CUDNN的库路径 | | OPENCV_DIR | OpenCV的安装路径 | | PADDLE_LIB | Paddle预测库的路径 | **注意:** 1. 使用`CPU`版预测库,请把`WITH_GPU`的勾去掉 2. 如果使用的是`openblas`版本,请把`WITH_MKL`勾去掉 ![step4](https://paddleseg.bj.bcebos.com/inference/vs2019_step5.png) 下面给出with GPU的配置示例: ![step5](./vs2019_build_withgpu_config.png) **注意:** CMAKE_BACKWARDS的版本要根据平台安装cmake的版本进行设置。 **设置完成后**, 点击上图中`保存并生成CMake缓存以加载变量`。 5. 点击`生成`->`全部生成` ![step6](https://paddleseg.bj.bcebos.com/inference/vs2019_step6.png) ### Step4: 预测 上述`Visual Studio 2019`编译产出的可执行文件在`out\build\x64-Release\Release`目录下,打开`cmd`,并切换到`D:\projects\PaddleOCR\deploy\cpp_infer\`: ``` cd D:\projects\PaddleOCR\deploy\cpp_infer ``` 可执行文件`ppocr.exe`即为样例的预测程序,其主要使用方法如下,更多使用方法可以参考[说明文档](../readme.md)`运行demo`部分。 ```shell #识别中文图片 `D:\projects\PaddleOCR\doc\imgs_words\ch\` .\out\build\x64-Release\Release\ppocr.exe rec --rec_model_dir=D:\projects\PaddleOCR\ch_ppocr_mobile_v2.0_rec_infer --image_dir=D:\projects\PaddleOCR\doc\imgs_words\ch\ #识别英文图片 'D:\projects\PaddleOCR\doc\imgs_words\en\' .\out\build\x64-Release\Release\ppocr.exe rec --rec_model_dir=D:\projects\PaddleOCR\inference\rec_mv3crnn --image_dir=D:\projects\PaddleOCR\doc\imgs_words\en\ --char_list_file=D:\projects\PaddleOCR\ppocr\utils\dict\en_dict.txt ``` 第一个参数为配置文件路径,第二个参数为需要预测的图片路径,第三个参数为配置文本识别的字典。 ### FQA * 在Windows下的终端中执行文件exe时,可能会发生乱码的现象,此时需要在终端中输入`CHCP 65001`,将终端的编码方式由GBK编码(默认)改为UTF-8编码,更加具体的解释可以参考这篇博客:[https://blog.csdn.net/qq_35038153/article/details/78430359](https://blog.csdn.net/qq_35038153/article/details/78430359)。 * 编译时,如果报错`错误:C1083 无法打开包括文件:"dirent.h":No such file or directory`,下载可[dirent.h](https://paddleocr.bj.bcebos.com/deploy/cpp_infer/cpp_files/dirent.h)文件,并添加到`utility.cpp`的头文件引用中。 * 编译时,如果报错`Autolog未定义`,新建`autolog.h`文件,内容为:[autolog.h](https://github.com/LDOUBLEV/AutoLog/blob/main/auto_log/autolog.h),并添加到`main.cpp`的头文件引用中,再次编译。 * 运行时,如果弹窗报错找不到`paddle_inference.dll`或者`openblas.dll`,在`D:\projects\paddle_inference`预测库内找到这两个文件,复制到`D:\projects\PaddleOCR\deploy\cpp_infer\out\build\x64-Release\Release`目录下。不用重新编译,再次运行即可。 * 运行时,弹窗报错提示`应用程序无法正常启动(0xc0000142)`,并且`cmd`窗口内提示`You are using Paddle compiled with TensorRT, but TensorRT dynamic library is not found.`,把tensort目录下的lib里面的所有dll文件复制到release目录下,再次运行即可。