# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle from paddle import nn import paddle.nn.functional as F from paddle import ParamAttr class DBFPN(nn.Layer): def __init__(self, in_channels, out_channels, **kwargs): super(DBFPN, self).__init__() self.out_channels = out_channels weight_attr = paddle.nn.initializer.KaimingNormal() self.in2_conv = nn.Conv2D( in_channels=in_channels[0], out_channels=self.out_channels, kernel_size=1, weight_attr=ParamAttr( name='conv2d_51.w_0', initializer=weight_attr), bias_attr=False) self.in3_conv = nn.Conv2D( in_channels=in_channels[1], out_channels=self.out_channels, kernel_size=1, weight_attr=ParamAttr( name='conv2d_50.w_0', initializer=weight_attr), bias_attr=False) self.in4_conv = nn.Conv2D( in_channels=in_channels[2], out_channels=self.out_channels, kernel_size=1, weight_attr=ParamAttr( name='conv2d_49.w_0', initializer=weight_attr), bias_attr=False) self.in5_conv = nn.Conv2D( in_channels=in_channels[3], out_channels=self.out_channels, kernel_size=1, weight_attr=ParamAttr( name='conv2d_48.w_0', initializer=weight_attr), bias_attr=False) self.p5_conv = nn.Conv2D( in_channels=self.out_channels, out_channels=self.out_channels // 4, kernel_size=3, padding=1, weight_attr=ParamAttr( name='conv2d_52.w_0', initializer=weight_attr), bias_attr=False) self.p4_conv = nn.Conv2D( in_channels=self.out_channels, out_channels=self.out_channels // 4, kernel_size=3, padding=1, weight_attr=ParamAttr( name='conv2d_53.w_0', initializer=weight_attr), bias_attr=False) self.p3_conv = nn.Conv2D( in_channels=self.out_channels, out_channels=self.out_channels // 4, kernel_size=3, padding=1, weight_attr=ParamAttr( name='conv2d_54.w_0', initializer=weight_attr), bias_attr=False) self.p2_conv = nn.Conv2D( in_channels=self.out_channels, out_channels=self.out_channels // 4, kernel_size=3, padding=1, weight_attr=ParamAttr( name='conv2d_55.w_0', initializer=weight_attr), bias_attr=False) def forward(self, x): c2, c3, c4, c5 = x in5 = self.in5_conv(c5) in4 = self.in4_conv(c4) in3 = self.in3_conv(c3) in2 = self.in2_conv(c2) out4 = in4 + F.upsample(in5, scale_factor=2, mode="nearest") # 1/16 out3 = in3 + F.upsample(out4, scale_factor=2, mode="nearest") # 1/8 out2 = in2 + F.upsample(out3, scale_factor=2, mode="nearest") # 1/4 p5 = self.p5_conv(in5) p4 = self.p4_conv(out4) p3 = self.p3_conv(out3) p2 = self.p2_conv(out2) p5 = F.upsample(p5, scale_factor=8, mode="nearest") p4 = F.upsample(p4, scale_factor=4, mode="nearest") p3 = F.upsample(p3, scale_factor=2, mode="nearest") fuse = paddle.concat([p5, p4, p3, p2], axis=1) return fuse