[English](../doc_en/PP-OCRv3_introduction_en.md) | 简体中文 # PP-OCRv3 - [1. 简介](#1) - [2. 检测优化](#2) - [3. 识别优化](#3) - [4. 端到端评估](#4) ## 1. 简介 PP-OCRv3在PP-OCRv2的基础上进一步升级。检测模型仍然基于DB算法,优化策略采用了带残差注意力机制的FPN结构RSEFPN、增大感受野的PAN结构LKPAN、基于DML训练的更优的教师模型;识别模型将base模型从CRNN替换成了IJCAI 2022论文[SVTR](),并采用SVTR轻量化、带指导训练CTC、数据增广策略RecConAug、自监督训练的更好的预训练模型、无标签数据的使用进行模型加速和效果提升。更多细节请参考PP-OCRv3[技术报告](./PP-OCRv3_introduction.md)。 PP-OCRv3系统pipeline如下:
## 2. 检测优化 PP-OCRv3采用PP-OCRv2的[CML](https://arxiv.org/pdf/2109.03144.pdf)蒸馏策略,在蒸馏的student模型、teacher模型精度提升,CML蒸馏策略上分别做了优化。 - 在蒸馏student模型精度提升方面,提出了基于残差结构的通道注意力模块RSEFPN(Residual Squeeze-and-Excitation FPN),用于提升student模型精度和召回。 RSEFPN的网络结构如下图所示,RSEFPN在PP-OCRv2的FPN基础上,将FPN中的卷积层更换为了通道注意力结构的RSEConv层。
RSEFPN将PP-OCR检测模型的精度hmean从81.3%提升到84.5%。模型大小从3M变为3.6M。 *注:PP-OCRv2的FPN通道数仅为96和24,如果直接用SE模块代替FPN的卷积会导致精度下降,RSEConv引入残差结构可以防止训练中包含重要特征的通道被抑制。* - 在蒸馏的teacher模型精度提升方面,提出了LKPAN结构替换PP-OCRv2的FPN结构,并且使用ResNet50作为Backbone,更大的模型带来更多的精度提升。另外,对teacher模型使用[DML](https://arxiv.org/abs/1706.00384)蒸馏策略进一步提升teacher模型的精度。最终teacher的模型指标相比ppocr_server_v2.0从83.2%提升到了86.0%。 *注:[PP-OCRv2的FPN结构](https://github.com/PaddlePaddle/PaddleOCR/blob/77acb3bfe51c8a46c684527f73cd218cefedb4a3/ppocr/modeling/necks/db_fpn.py#L107)对DB算法FPN结构做了轻量级设计* LKPAN的网络结构如下图所示:
LKPAN(Large Kernel PAN)是一个具有更大感受野的轻量级[PAN](https://arxiv.org/pdf/1803.01534.pdf)结构。在LKPAN的path augmentation中,使用kernel size为`9*9`的卷积;更大的kernel size意味着更大的感受野,更容易检测大字体的文字以及极端长宽比的文字。LKPAN将PP-OCR检测模型的精度hmean从81.3%提升到84.9%。 *注:LKPAN相比RSEFPN有更多的精度提升,但是考虑到模型大小和预测速度等因素,在student模型中使用RSEFPN。* 采用上述策略,PP-OCRv3相比PP-OCRv2,hmean指标从83.3%提升到85.4%;预测速度从平均117ms/image变为124ms/image。 3. PP-OCRv3检测模型消融实验 |序号|策略|模型大小|hmean|Intel Gold 6148CPU+mkldnn预测耗时| |-|-|-|-|-| |0|PP-OCR|3M|81.3%|117ms| |1|PP-OCRV2|3M|83.3%|117ms| |2|0 + RESFPN|3.6M|84.5%|124ms| |3|0 + LKPAN|4.6M|84.9%|156ms| |4|ppocr_server_v2.0 |124M|83.2%||171ms| |5|teacher + DML + LKPAN|124M|86.0%|396ms| |6|0 + 2 + 5 + CML|3.6M|85.4%|124ms| ## 3. 识别优化 PP-OCRv3 识别模型在 PP-OCRv2 的基础上从8个策略上进一步优化,整体 pipelinne 如下图所示: 总体来讲PP-OCRv3识别主要从网络结构、蒸馏策略、数据增强三个方向做了进一步优化: - 网络结构上:考虑[SVTR](https://arxiv.org/abs/2205.00159) 在中英文效果上的优越性,采用SVTR_Tiny作为base,选取Global Mixing Block和卷积组合提取特征,并将Global Mixing Block位置后移进行加速; 参考 [GTC](https://arxiv.org/pdf/2002.01276.pdf) 策略,使用注意力机制模块指导CTC训练,定位和识别字符,提升不规则文本的识别精度。 - 蒸馏策略上:参考 [SSL](https://github.com/ku21fan/STR-Fewer-Labels) 设计了方向分类前序任务,获取更优预训练模型,加速模型收敛过程,提升精度; 使用UDML蒸馏策略、监督attention、ctc两个分支得到更优模型。 - 数据增强上:基于 [ConCLR](https://www.cse.cuhk.edu.hk/~byu/papers/C139-AAAI2022-ConCLR.pdf) 中的ConAug方法,改进得到 TextConAug 数据增广方法,支持随机结合任意多张图片,提升训练数据的上下文信息丰富度,增强模型鲁棒性 - 无标注数据: 使用 SVTR_large 预测无标签数据,向训练集中补充81w高质量真实数据。 基于上述策略,PP-OCRv3识别模型相比PP-OCRv2,在速度可比的情况下,精度进一步提升4.6%。 具体消融实验如下所示: | id | 策略 | 模型大小 | 精度 | 速度(cpu + mkldnn)| |-----|-----|--------|----| --- | | 01 | PP-OCRv2 | 8M | 74.8% | 8.54ms | | 02 | SVTR_Tiny | 21M | 80.1% | 97ms | | 03 | PP-LCNet_SVTR | 12M | 71.9% | 6.6ms | | 04 | + GTC | 12M | 75.8% | 7.6ms | | 05 | + TextConAug | 12M | 76.3% | 7.6ms | | 06 | + TextRotNet | 12M | 76.9% | 7.6ms | | 07 | + UDML | 12M | 78.4% | 7.6ms | | 08 | + UIM | 12M | 79.4% | 7.6ms | 注: 测试速度时,实验01-03输入图片尺寸均为(3,32,320),04-08输入图片尺寸均为(3,48,320) 下面具体介绍各策略的设计思路: 网络结构上,PP-OCRv3将base模型从CRNN替换成了[SVTR](https://arxiv.org/abs/2205.00159),SVTR证明了强大的单视觉模型(无需序列模型)即可高效准确完成文本识别任务,在中英文数据上均有优秀的表现。经过实验验证,SVTR_Tiny 在自建的 [中文数据集上](https://arxiv.org/abs/2109.03144) ,识别精度可以提升至80.1%,SVTR_Tiny 网络结构如下所示: 由于 MKLDNN 加速库支持的模型结构有限,SVTR 在CPU+MKLDNN上相比PP-OCRv2-baseline慢了10倍。 PP-OCRv3 期望在提升模型精度的同时,不带来额外的推理耗时。通过分析发现,SVTR_Tiny结构的主要耗时模块为Mixing Block,因此我们对 SVTR_Tiny 的结构进行了一系列优化(详细速度数据请参考下方消融实验表格): 1. 将SVTR网络前半部分替换为PP-LCNet的前三个stage,保留4个 Global Mixing Block ,精度为76%,加速69%,网络结构如下所示: 2. 将4个 Global Attenntion Block 减小到2个,精度为72.9%,加速69%,网络结构如下所示: 3. 实验发现 Global Attention 的预测速度与输入其特征的shape有关,因此后移Global Mixing Block的位置到池化层之后,精度下降为71.9%,速度超越 CNN-base 的PP-OCRv2-baseline 22%,网络结构如下所示: 具体消融实验如下所示: | id | 策略 | 模型大小 | 精度 | 速度(cpu + mkldnn)| |-----|-----|--------|----| --- | | 01 | PP-OCRv2-baseline | 8M | 69.3% | 8.54ms | | 02 | SVTR_Tiny | 21M | 80.1% | 97ms | | 03 | PP-LCNet_SVTR(G4) | 9.2M | 76% | 30ms | | 04 | PP-LCNet_SVTR(G2) | 13M | 72.98% | 9.37ms | | 05 | PP-LCNet_SVTR | 12M | 71.9% | 6.6ms | 注: 测试速度时,输入图片尺寸均为(3,32,320); PP-OCRv2-baseline 代表无蒸馏模型 为了提升模型精度同时不引入额外推理成本,PP-OCRv3参考GTC策略,使用Attention监督CTC训练,预测时完全去除Attention模块,在推理阶段不增加任何耗时, 精度提升3.8%,训练流程如下所示: 在蒸馏策略方面: PP-OCRv3参考 [SSL](https://github.com/ku21fan/STR-Fewer-Labels) 设计了文本方向任务,训练了适用于文本识别的预训练模型,加速模型收敛过程,精度提升了0.6%; 使用UDML蒸馏策略,进一步提升精度1.5%,训练流程所示: 数据增强方面: 1. 基于 [ConCLR](https://www.cse.cuhk.edu.hk/~byu/papers/C139-AAAI2022-ConCLR.pdf) 中的ConAug方法,设计了 RecConAug 数据增强方法,增强数据多样性,精度提升0.5%,增强可视化效果如下所示: 2. 使用训练好的 SVTR_large 预测 120W 的 lsvt 无标注数据,取出其中得分大于0.95的数据,共得到81W识别数据加入到PP-OCRv3的训练数据中,精度提升1%。 ## 4. 端到端评估