# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from paddle.optimizer.lr import LRScheduler class CyclicalCosineDecay(LRScheduler): def __init__(self, learning_rate, T_max, cycle=1, last_epoch=-1, eta_min=0.0, verbose=False): """ Cyclical cosine learning rate decay A learning rate which can be referred in https://arxiv.org/pdf/2012.12645.pdf Args: learning rate(float): learning rate T_max(int): maximum epoch num cycle(int): period of the cosine decay last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. eta_min(float): minimum learning rate during training verbose(bool): whether to print learning rate for each epoch """ super(CyclicalCosineDecay, self).__init__(learning_rate, last_epoch, verbose) self.cycle = cycle self.eta_min = eta_min def get_lr(self): if self.last_epoch == 0: return self.base_lr reletive_epoch = self.last_epoch % self.cycle lr = self.eta_min + 0.5 * (self.base_lr - self.eta_min) * \ (1 + math.cos(math.pi * reletive_epoch / self.cycle)) return lr class OneCycleDecay(LRScheduler): """ One Cycle learning rate decay A learning rate which can be referred in https://arxiv.org/abs/1708.07120 Code refered in https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR """ def __init__(self, max_lr, epochs=None, steps_per_epoch=None, pct_start=0.3, anneal_strategy='cos', div_factor=25., final_div_factor=1e4, three_phase=False, last_epoch=-1, verbose=False): # Validate total_steps if epochs <= 0 or not isinstance(epochs, int): raise ValueError( "Expected positive integer epochs, but got {}".format(epochs)) if steps_per_epoch <= 0 or not isinstance(steps_per_epoch, int): raise ValueError( "Expected positive integer steps_per_epoch, but got {}".format( steps_per_epoch)) self.total_steps = epochs * steps_per_epoch self.max_lr = max_lr self.initial_lr = self.max_lr / div_factor self.min_lr = self.initial_lr / final_div_factor if three_phase: self._schedule_phases = [ { 'end_step': float(pct_start * self.total_steps) - 1, 'start_lr': self.initial_lr, 'end_lr': self.max_lr, }, { 'end_step': float(2 * pct_start * self.total_steps) - 2, 'start_lr': self.max_lr, 'end_lr': self.initial_lr, }, { 'end_step': self.total_steps - 1, 'start_lr': self.initial_lr, 'end_lr': self.min_lr, }, ] else: self._schedule_phases = [ { 'end_step': float(pct_start * self.total_steps) - 1, 'start_lr': self.initial_lr, 'end_lr': self.max_lr, }, { 'end_step': self.total_steps - 1, 'start_lr': self.max_lr, 'end_lr': self.min_lr, }, ] # Validate pct_start if pct_start < 0 or pct_start > 1 or not isinstance(pct_start, float): raise ValueError( "Expected float between 0 and 1 pct_start, but got {}".format( pct_start)) # Validate anneal_strategy if anneal_strategy not in ['cos', 'linear']: raise ValueError( "anneal_strategy must by one of 'cos' or 'linear', instead got {}". format(anneal_strategy)) elif anneal_strategy == 'cos': self.anneal_func = self._annealing_cos elif anneal_strategy == 'linear': self.anneal_func = self._annealing_linear super(OneCycleDecay, self).__init__(max_lr, last_epoch, verbose) def _annealing_cos(self, start, end, pct): "Cosine anneal from `start` to `end` as pct goes from 0.0 to 1.0." cos_out = math.cos(math.pi * pct) + 1 return end + (start - end) / 2.0 * cos_out def _annealing_linear(self, start, end, pct): "Linearly anneal from `start` to `end` as pct goes from 0.0 to 1.0." return (end - start) * pct + start def get_lr(self): computed_lr = 0.0 step_num = self.last_epoch if step_num > self.total_steps: raise ValueError( "Tried to step {} times. The specified number of total steps is {}" .format(step_num + 1, self.total_steps)) start_step = 0 for i, phase in enumerate(self._schedule_phases): end_step = phase['end_step'] if step_num <= end_step or i == len(self._schedule_phases) - 1: pct = (step_num - start_step) / (end_step - start_step) computed_lr = self.anneal_func(phase['start_lr'], phase['end_lr'], pct) break start_step = phase['end_step'] return computed_lr