#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import pickle import paddle import paddle.nn as nn import paddle.nn.functional as F class CenterLoss(nn.Layer): """ Reference: Wen et al. A Discriminative Feature Learning Approach for Deep Face Recognition. ECCV 2016. """ def __init__(self, num_classes=6625, feat_dim=96, init_center=False, center_file_path=None): super().__init__() self.num_classes = num_classes self.feat_dim = feat_dim self.centers = paddle.randn( shape=[self.num_classes, self.feat_dim]).astype( "float64") #random center if init_center: assert os.path.exists( center_file_path ), f"center path({center_file_path}) must exist when init_center is set as True." with open(center_file_path, 'rb') as f: char_dict = pickle.load(f) for key in char_dict.keys(): self.centers[key] = paddle.to_tensor(char_dict[key]) def __call__(self, predicts, batch): assert isinstance(predicts, (list, tuple)) features, predicts = predicts feats_reshape = paddle.reshape( features, [-1, features.shape[-1]]).astype("float64") label = paddle.argmax(predicts, axis=2) label = paddle.reshape(label, [label.shape[0] * label.shape[1]]) batch_size = feats_reshape.shape[0] #calc feat * feat dist1 = paddle.sum(paddle.square(feats_reshape), axis=1, keepdim=True) dist1 = paddle.expand(dist1, [batch_size, self.num_classes]) #dist2 of centers dist2 = paddle.sum(paddle.square(self.centers), axis=1, keepdim=True) #num_classes dist2 = paddle.expand(dist2, [self.num_classes, batch_size]).astype("float64") dist2 = paddle.transpose(dist2, [1, 0]) #first x * x + y * y distmat = paddle.add(dist1, dist2) tmp = paddle.matmul(feats_reshape, paddle.transpose(self.centers, [1, 0])) distmat = distmat - 2.0 * tmp #generate the mask classes = paddle.arange(self.num_classes).astype("int64") label = paddle.expand( paddle.unsqueeze(label, 1), (batch_size, self.num_classes)) mask = paddle.equal( paddle.expand(classes, [batch_size, self.num_classes]), label).astype("float64") #get mask dist = paddle.multiply(distmat, mask) loss = paddle.sum(paddle.clip(dist, min=1e-12, max=1e+12)) / batch_size return {'loss_center': loss}