Global: use_gpu: True epoch_num: 600 log_smooth_window: 20 print_batch_step: 10 save_model_dir: ./output/pg_r50_vd_tt/ save_epoch_step: 10 # evaluation is run every 0 iterationss after the 1000th iteration eval_batch_step: [ 0, 1000 ] # 1. If pretrained_model is saved in static mode, such as classification pretrained model # from static branch, load_static_weights must be set as True. # 2. If you want to finetune the pretrained models we provide in the docs, # you should set load_static_weights as False. load_static_weights: True cal_metric_during_train: False pretrained_model: checkpoints: save_inference_dir: use_visualdl: False infer_img: save_res_path: ./output/pg_r50_vd_tt/predicts_pg.txt Architecture: model_type: e2e algorithm: PGNet Transform: Backbone: name: ResNet layers: 50 Neck: name: PGFPN model_name: large Head: name: PGHead model_name: large Loss: name: PGLoss Optimizer: name: Adam beta1: 0.9 beta2: 0.999 lr: learning_rate: 0.001 regularizer: name: 'L2' factor: 0 PostProcess: name: PGPostProcess score_thresh: 0.8 cover_thresh: 0.1 nms_thresh: 0.2 Metric: name: E2EMetric Lexicon_Table: [ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z' ] main_indicator: f_score_e2e Train: dataset: name: PGDateSet label_file_list: [./train_data/total_text/train/] ratio_list: [1.0] data_format: icdar transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - PGProcessTrain: batch_size: 14 min_crop_size: 24 min_text_size: 4 max_text_size: 512 Lexicon_Table: [ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z' ] - KeepKeys: keep_keys: [ 'images', 'tcl_maps', 'tcl_label_maps', 'border_maps','direction_maps', 'training_masks', 'label_list', 'pos_list', 'pos_mask' ] # dataloader will return list in this order loader: shuffle: True drop_last: True batch_size_per_card: 14 num_workers: 16 Eval: dataset: name: PGDataSet data_dir: ./train_data/ label_file_list: [./train_data/total_text/test/] transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - E2ELabelEncode: Lexicon_Table: [ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z' ] max_len: 50 - E2EResizeForTest: valid_set: totaltext max_side_len: 768 - NormalizeImage: scale: 1./255. mean: [ 0.485, 0.456, 0.406 ] std: [ 0.229, 0.224, 0.225 ] order: 'hwc' - ToCHWImage: - KeepKeys: keep_keys: [ 'image', 'shape', 'polys', 'strs', 'tags' ] loader: shuffle: False drop_last: False batch_size_per_card: 1 # must be 1 num_workers: 2