# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) sys.path.append(os.path.abspath(os.path.join(__dir__, '../..'))) import paddle from paddlenlp.transformers import LayoutXLMTokenizer, LayoutXLMModel, LayoutXLMForRelationExtraction from xfun import XFUNDataset from vqa_utils import parse_args, get_bio_label_maps, print_arguments from data_collator import DataCollator from metric import re_score from ppocr.utils.logging import get_logger def cal_metric(re_preds, re_labels, entities): gt_relations = [] for b in range(len(re_labels)): rel_sent = [] for head, tail in zip(re_labels[b]["head"], re_labels[b]["tail"]): rel = {} rel["head_id"] = head rel["head"] = (entities[b]["start"][rel["head_id"]], entities[b]["end"][rel["head_id"]]) rel["head_type"] = entities[b]["label"][rel["head_id"]] rel["tail_id"] = tail rel["tail"] = (entities[b]["start"][rel["tail_id"]], entities[b]["end"][rel["tail_id"]]) rel["tail_type"] = entities[b]["label"][rel["tail_id"]] rel["type"] = 1 rel_sent.append(rel) gt_relations.append(rel_sent) re_metrics = re_score(re_preds, gt_relations, mode="boundaries") return re_metrics def evaluate(model, eval_dataloader, logger, prefix=""): # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = {}".format(len(eval_dataloader.dataset))) re_preds = [] re_labels = [] entities = [] eval_loss = 0.0 model.eval() for idx, batch in enumerate(eval_dataloader): with paddle.no_grad(): outputs = model(**batch) loss = outputs['loss'].mean().item() if paddle.distributed.get_rank() == 0: logger.info("[Eval] process: {}/{}, loss: {:.5f}".format( idx, len(eval_dataloader), loss)) eval_loss += loss re_preds.extend(outputs['pred_relations']) re_labels.extend(batch['relations']) entities.extend(batch['entities']) re_metrics = cal_metric(re_preds, re_labels, entities) re_metrics = { "precision": re_metrics["ALL"]["p"], "recall": re_metrics["ALL"]["r"], "f1": re_metrics["ALL"]["f1"], } model.train() return re_metrics def eval(args): logger = get_logger() label2id_map, id2label_map = get_bio_label_maps(args.label_map_path) pad_token_label_id = paddle.nn.CrossEntropyLoss().ignore_index tokenizer = LayoutXLMTokenizer.from_pretrained(args.model_name_or_path) model = LayoutXLMForRelationExtraction.from_pretrained( args.model_name_or_path) eval_dataset = XFUNDataset( tokenizer, data_dir=args.eval_data_dir, label_path=args.eval_label_path, label2id_map=label2id_map, img_size=(224, 224), max_seq_len=args.max_seq_length, pad_token_label_id=pad_token_label_id, contains_re=True, add_special_ids=False, return_attention_mask=True, load_mode='all') eval_dataloader = paddle.io.DataLoader( eval_dataset, batch_size=args.per_gpu_eval_batch_size, num_workers=args.num_workers, shuffle=False, collate_fn=DataCollator()) results = evaluate(model, eval_dataloader, logger) logger.info("eval results: {}".format(results)) if __name__ == "__main__": args = parse_args() eval(args)