# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle from paddle import nn from .basic_loss import CELoss, DistanceLoss class RFLLoss(nn.Layer): def __init__(self, ignore_index=-100, **kwargs): super().__init__() self.cnt_loss = nn.MSELoss(**kwargs) self.seq_loss = nn.CrossEntropyLoss(ignore_index=ignore_index) def forward(self, predicts, batch): self.total_loss = {} total_loss = 0.0 # batch [image, label, length, cnt_label] if predicts[0] is not None: cnt_loss = self.cnt_loss(predicts[0], paddle.cast(batch[3], paddle.float32)) self.total_loss['cnt_loss'] = cnt_loss total_loss += cnt_loss if predicts[1] is not None: targets = batch[1].astype("int64") label_lengths = batch[2].astype('int64') batch_size, num_steps, num_classes = predicts[1].shape[0], predicts[ 1].shape[1], predicts[1].shape[2] assert len(targets.shape) == len(list(predicts[1].shape)) - 1, \ "The target's shape and inputs's shape is [N, d] and [N, num_steps]" inputs = predicts[1][:, :-1, :] targets = targets[:, 1:] inputs = paddle.reshape(inputs, [-1, inputs.shape[-1]]) targets = paddle.reshape(targets, [-1]) seq_loss = self.seq_loss(inputs, targets) self.total_loss['seq_loss'] = seq_loss total_loss += seq_loss self.total_loss['loss'] = total_loss return self.total_loss