未验证 提交 fec36dd6 编写于 作者: D Double_V 提交者: GitHub

Merge branch 'dygraph' into fix_ci

......@@ -37,6 +37,17 @@ from paddleslim.dygraph.quant import QAT
from ppocr.data import build_dataloader
def export_single_model(quanter, model, infer_shape, save_path, logger):
quanter.save_quantized_model(
model,
save_path,
input_spec=[
paddle.static.InputSpec(
shape=[None] + infer_shape, dtype='float32')
])
logger.info('inference QAT model is saved to {}'.format(save_path))
def main():
############################################################################################################
# 1. quantization configs
......@@ -76,7 +87,14 @@ def main():
# for rec algorithm
if hasattr(post_process_class, 'character'):
char_num = len(getattr(post_process_class, 'character'))
if config['Architecture']["algorithm"] in ["Distillation",
]: # distillation model
for key in config['Architecture']["Models"]:
config['Architecture']["Models"][key]["Head"][
'out_channels'] = char_num
else: # base rec model
config['Architecture']["Head"]['out_channels'] = char_num
model = build_model(config['Architecture'])
# get QAT model
......@@ -97,22 +115,25 @@ def main():
# start eval
metirc = program.eval(model, valid_dataloader, post_process_class,
eval_class, model_type, use_srn)
logger.info('metric eval ***************')
for k, v in metirc.items():
for k, v in metric.items():
logger.info('{}:{}'.format(k, v))
save_path = '{}/inference'.format(config['Global']['save_inference_dir'])
infer_shape = [3, 32, 100] if config['Architecture'][
'model_type'] != "det" else [3, 640, 640]
quanter.save_quantized_model(
model,
save_path,
input_spec=[
paddle.static.InputSpec(
shape=[None] + infer_shape, dtype='float32')
])
logger.info('inference QAT model is saved to {}'.format(save_path))
save_path = config["Global"]["save_inference_dir"]
arch_config = config["Architecture"]
if arch_config["algorithm"] in ["Distillation", ]: # distillation model
for idx, name in enumerate(model.model_name_list):
sub_model_save_path = os.path.join(save_path, name, "inference")
export_single_model(quanter, model.model_list[idx], infer_shape,
sub_model_save_path, logger)
else:
save_path = os.path.join(save_path, "inference")
export_single_model(quanter, model, infer_shape, save_path, logger)
if __name__ == "__main__":
......
......@@ -109,9 +109,18 @@ def main(config, device, logger, vdl_writer):
# for rec algorithm
if hasattr(post_process_class, 'character'):
char_num = len(getattr(post_process_class, 'character'))
if config['Architecture']["algorithm"] in ["Distillation",
]: # distillation model
for key in config['Architecture']["Models"]:
config['Architecture']["Models"][key]["Head"][
'out_channels'] = char_num
else: # base rec model
config['Architecture']["Head"]['out_channels'] = char_num
model = build_model(config['Architecture'])
quanter = QAT(config=quant_config, act_preprocess=PACT)
quanter.quantize(model)
if config['Global']['distributed']:
model = paddle.DataParallel(model)
......@@ -132,8 +141,6 @@ def main(config, device, logger, vdl_writer):
logger.info('train dataloader has {} iters, valid dataloader has {} iters'.
format(len(train_dataloader), len(valid_dataloader)))
quanter = QAT(config=quant_config, act_preprocess=PACT)
quanter.quantize(model)
# start train
program.train(config, train_dataloader, valid_dataloader, device, model,
......
......@@ -91,14 +91,14 @@ def init_model(config, model, optimizer=None, lr_scheduler=None):
def load_dygraph_params(config, model, logger, optimizer):
ckp = config['Global']['checkpoints']
if ckp and os.path.exists(ckp):
if ckp and os.path.exists(ckp + ".pdparams"):
pre_best_model_dict = init_model(config, model, optimizer)
return pre_best_model_dict
else:
pm = config['Global']['pretrained_model']
if pm is None:
return {}
if not os.path.exists(pm) or not os.path.exists(pm + ".pdparams"):
if not os.path.exists(pm) and not os.path.exists(pm + ".pdparams"):
logger.info(f"The pretrained_model {pm} does not exists!")
return {}
pm = pm if pm.endswith('.pdparams') else pm + '.pdparams'
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册