diff --git a/doc/doc_ch/detection.md b/doc/doc_ch/detection.md
index a8dee65a220e3c66d8502181dd2a542cb01a29b5..671fda998d523405e22692ade5c7dced6e1f390c 100644
--- a/doc/doc_ch/detection.md
+++ b/doc/doc_ch/detection.md
@@ -108,9 +108,9 @@ PaddleOCR计算三个OCR检测相关的指标,分别是:Precision、Recall
运行如下代码,根据配置文件`det_db_mv3.yml`中`save_res_path`指定的测试集检测结果文件,计算评估指标。
评估时设置后处理参数`box_thresh=0.5`,`unclip_ratio=1.5`,使用不同数据集、不同模型训练,可调整这两个参数进行优化
-训练中模型参数默认保存在`Global.save_model_dir`目录下。在评估指标时,需要设置`Global.checkpoints`指向保存的参数文件。
+训练中模型参数默认保存在`Global.save_model_dir`目录下。在评估指标时,需要设置`Global.pretrained_model`指向保存的参数文件。
```shell
-python3 tools/eval.py -c configs/det/det_mv3_db.yml -o Global.checkpoints="{path/to/weights}/best_accuracy" PostProcess.box_thresh=0.5 PostProcess.unclip_ratio=1.5
+python3 tools/eval.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model="{path/to/weights}/best_accuracy" PostProcess.box_thresh=0.5 PostProcess.unclip_ratio=1.5
```
diff --git a/doc/doc_ch/recognition.md b/doc/doc_ch/recognition.md
index 028a248fe6ba72d435ed2f0a1b21629f35851be9..faa015b754f4c47e6789049df60264f0dd468784 100644
--- a/doc/doc_ch/recognition.md
+++ b/doc/doc_ch/recognition.md
@@ -420,8 +420,8 @@ Eval:
评估数据集可以通过 `configs/rec/rec_icdar15_train.yml` 修改Eval中的 `label_file_path` 设置。
```
-# GPU 评估, Global.checkpoints 为待测权重
-python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy
+# GPU 评估, Global.pretrained_model 为待测权重
+python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
```
@@ -432,7 +432,7 @@ python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec
使用 PaddleOCR 训练好的模型,可以通过以下脚本进行快速预测。
-默认预测图片存储在 `infer_img` 里,通过 `-o Global.checkpoints` 指定权重:
+默认预测图片存储在 `infer_img` 里,通过 `-o Global.pretrained_model` 指定权重:
```
# 预测英文结果
diff --git a/doc/doc_en/detection_en.md b/doc/doc_en/detection_en.md
index 3ee9092cc6a6f50b19f20df646c9cb1949d5d80f..897f5b3b09077da59cf213709c40c1850d734e39 100644
--- a/doc/doc_en/detection_en.md
+++ b/doc/doc_en/detection_en.md
@@ -101,9 +101,9 @@ Run the following code to calculate the evaluation indicators. The result will b
When evaluating, set post-processing parameters `box_thresh=0.6`, `unclip_ratio=1.5`. If you use different datasets, different models for training, these two parameters should be adjusted for better result.
-The model parameters during training are saved in the `Global.save_model_dir` directory by default. When evaluating indicators, you need to set `Global.checkpoints` to point to the saved parameter file.
+The model parameters during training are saved in the `Global.save_model_dir` directory by default. When evaluating indicators, you need to set `Global.pretrained_model` to point to the saved parameter file.
```shell
-python3 tools/eval.py -c configs/det/det_mv3_db.yml -o Global.checkpoints="{path/to/weights}/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5
+python3 tools/eval.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model="{path/to/weights}/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5
```
diff --git a/doc/doc_en/recognition_en.md b/doc/doc_en/recognition_en.md
index 73157f864c456b92a580d22d28b2003bff68e578..67eece7e85ce29df2d7601ae72f06c9a71061f0b 100644
--- a/doc/doc_en/recognition_en.md
+++ b/doc/doc_en/recognition_en.md
@@ -425,8 +425,8 @@ Eval:
The evaluation dataset can be set by modifying the `Eval.dataset.label_file_list` field in the `configs/rec/rec_icdar15_train.yml` file.
```
-# GPU evaluation, Global.checkpoints is the weight to be tested
-python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy
+# GPU evaluation, Global.pretrained_model is the weight to be tested
+python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
```
@@ -437,7 +437,7 @@ python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec
Using the model trained by paddleocr, you can quickly get prediction through the following script.
-The default prediction picture is stored in `infer_img`, and the weight is specified via `-o Global.checkpoints`:
+The default prediction picture is stored in `infer_img`, and the weight is specified via `-o Global.pretrained_model`:
```
# Predict English results
diff --git a/doc/joinus.PNG b/doc/joinus.PNG
index 1eeef6be39327f3d9f9e862689d10d8e02579f58..477760f674438f487ac906bb4692c2df066409a8 100644
Binary files a/doc/joinus.PNG and b/doc/joinus.PNG differ
diff --git a/ppocr/postprocess/rec_postprocess.py b/ppocr/postprocess/rec_postprocess.py
index b0517982f00ff7e283b613309b3676d793e8b7ad..c769b7b4a3076645b0fefe27d1271dedd4ad2d19 100644
--- a/ppocr/postprocess/rec_postprocess.py
+++ b/ppocr/postprocess/rec_postprocess.py
@@ -216,6 +216,7 @@ class SRNLabelDecode(BaseRecLabelDecode):
character_type='en',
use_space_char=False,
**kwargs):
+ self.max_text_length = kwargs['max_text_length']
super(SRNLabelDecode, self).__init__(character_dict_path,
character_type, use_space_char)
@@ -229,9 +230,9 @@ class SRNLabelDecode(BaseRecLabelDecode):
preds_idx = np.argmax(pred, axis=1)
preds_prob = np.max(pred, axis=1)
- preds_idx = np.reshape(preds_idx, [-1, 25])
+ preds_idx = np.reshape(preds_idx, [-1, self.max_text_length])
- preds_prob = np.reshape(preds_prob, [-1, 25])
+ preds_prob = np.reshape(preds_prob, [-1, self.max_text_length])
text = self.decode(preds_idx, preds_prob)
diff --git a/tools/infer/predict_system.py b/tools/infer/predict_system.py
index de7ee9d342063161f2e329c99d2428051c0ecf8c..ea622fac5e5870437907ee8c5b8068d77ecd3c0c 100755
--- a/tools/infer/predict_system.py
+++ b/tools/infer/predict_system.py
@@ -176,6 +176,8 @@ def main(args):
draw_img_save = "./inference_results/"
if not os.path.exists(draw_img_save):
os.makedirs(draw_img_save)
+ if flag:
+ image_file = image_file[:-3] + "png"
cv2.imwrite(
os.path.join(draw_img_save, os.path.basename(image_file)),
draw_img[:, :, ::-1])