Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
weixin_41840029
PaddleOCR
提交
f6408e11
P
PaddleOCR
项目概览
weixin_41840029
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f6408e11
编写于
9月 21, 2020
作者:
Y
yukavio
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
complete the doc of sensitivity analysis
上级
3e3d06b6
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
13 addition
and
2 deletion
+13
-2
deploy/slim/prune/README.md
deploy/slim/prune/README.md
+13
-2
未找到文件。
deploy/slim/prune/README.md
浏览文件 @
f6408e11
...
...
@@ -3,7 +3,7 @@
复杂的模型有利于提高模型的性能,但也导致模型中存在一定冗余,模型裁剪通过移出网络模型中的子模型来减少这种冗余,达到减少模型计算复杂度,提高模型推理性能的目的。
本教程将介绍如何使用PaddleSlim
量化
PaddleOCR的模型。
本教程将介绍如何使用PaddleSlim
压缩
PaddleOCR的模型。
在开始本教程之前,建议先了解
1.
[
PaddleOCR模型的训练方法
](
../../../doc/doc_ch/quickstart.md
)
...
...
@@ -35,6 +35,17 @@ python setup.py install
加载预训练模型后,通过对现有模型的每个网络层进行敏感度分析,得到敏感度文件:sensitivities_0.data,可以通过PaddleSlim提供的
[
接口
](
https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/prune/sensitive.py#L221
)
加载文件,获得各网络层在不同裁剪比例下的精度损失。从而了解各网络层冗余度,决定每个网络层的裁剪比例。
敏感度分析的具体细节见:
[
敏感度分析
](
https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/tutorials/image_classification_sensitivity_analysis_tutorial.md
)
敏感度文件内容格式:
sensitivities_0.data(Dict){
'layer_weight_name_0': sens_of_each_ratio(Dict){'pruning_ratio_0': acc_loss, 'pruning_ratio_1': acc_loss}
'layer_weight_name_1': sens_of_each_ratio(Dict){'pruning_ratio_0': acc_loss, 'pruning_ratio_1': acc_loss}
}
例子:
{
'conv10_expand_weights': {0.1: 0.006509952684312718, 0.2: 0.01827734339798862, 0.3: 0.014528405644659832, 0.6: 0.06536008804270439, 0.8: 0.11798612250664964, 0.7: 0.12391408417493704, 0.4: 0.030615754498018757, 0.5: 0.047105205602406594}
'conv10_linear_weights': {0.1: 0.05113190831455035, 0.2: 0.07705573833558801, 0.3: 0.12096721757739311, 0.6: 0.5135061352930738, 0.8: 0.7908166677143281, 0.7: 0.7272187676899062, 0.4: 0.1819252083008504, 0.5: 0.3728054727792405}
}
进入PaddleOCR根目录,通过以下命令对模型进行敏感度分析训练:
```
bash
...
...
@@ -42,7 +53,7 @@ python deploy/slim/prune/sensitivity_anal.py -c configs/det/det_mv3_db.yml -o Gl
```
### 4. 模型裁剪训练
裁剪时通过之前的敏感度分析文件决定每个网络层的裁剪比例。在具体实现时,为了尽可能多的保留从图像中提取的低阶特征,我们跳过了backbone中靠近输入的4个卷积层。同样,为了减少由于裁剪导致的模型性能损失,我们通过之前敏感度分析所获得的敏感度表,人工挑选出了一些冗余较少,对裁剪较为敏感的
[
网络层
](
https://github.com/PaddlePaddle/PaddleOCR/blob/develop/deploy/slim/prune/pruning_and_finetune.py#L41
)
(指
对其进行较低比例裁剪就会导致模型性能显著下降
的网络层),并在之后的裁剪过程中选择避开这些网络层。裁剪过后finetune的过程沿用OCR检测模型原始的训练策略。
裁剪时通过之前的敏感度分析文件决定每个网络层的裁剪比例。在具体实现时,为了尽可能多的保留从图像中提取的低阶特征,我们跳过了backbone中靠近输入的4个卷积层。同样,为了减少由于裁剪导致的模型性能损失,我们通过之前敏感度分析所获得的敏感度表,人工挑选出了一些冗余较少,对裁剪较为敏感的
[
网络层
](
https://github.com/PaddlePaddle/PaddleOCR/blob/develop/deploy/slim/prune/pruning_and_finetune.py#L41
)
(指
在较低的裁剪比例下就导致很高性能损失
的网络层),并在之后的裁剪过程中选择避开这些网络层。裁剪过后finetune的过程沿用OCR检测模型原始的训练策略。
```
bash
python deploy/slim/prune/pruning_and_finetune.py
-c
configs/det/det_mv3_db.yml
-o
Global.pretrain_weights
=
./deploy/slim/prune/pretrain_models/det_mv3_db/best_accuracy Global.test_batch_size_per_card
=
1
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录