diff --git a/tests/params.txt b/tests/params.txt new file mode 100644 index 0000000000000000000000000000000000000000..4fc6626cef8041df00d1346eca570523eb63c263 --- /dev/null +++ b/tests/params.txt @@ -0,0 +1,48 @@ +===========================train_params=========================== +model_name:ocr_det +python:python3.7 +gpu_list:0|0,1 +Global.auto_cast:null +Global.epoch_num:2 +Global.save_model_dir:./output/ +Train.loader.batch_size_per_card:2 +Global.use_gpu: +Global.pretrained_model:null +train_model_name:latest +train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/ +null:null +## +trainer:norm_train|pact_train +norm_train:tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained +pact_train:deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/det_mv3_db_v2.0_train/best_accuracy +fpgm_train:null +distill_train:null +null:null +null:null +## +===========================eval_params=========================== +eval:null +null:null +## +===========================infer_params=========================== +Global.save_inference_dir:./output/ +Global.pretrained_model: +norm_export:tools/export_model.py -c configs/det/det_mv3_db.yml -o +quant_export:deploy/slim/quantization/export_model.py -c configs/det/det_mv3_db.yml -o +fpgm_export:deploy/slim/prune/export_prune_model.py +distill_export:null +null:null +null:null +## +inference:tools/infer/predict_det.py +--use_gpu:True|False +--enable_mkldnn:True|False +--cpu_threads:1|6 +--rec_batch_num:1 +--use_tensorrt:True|False +--precision:fp32|fp16|int8 +--det_model_dir:./inference/ch_ppocr_mobile_v2.0_det_infer/ +--image_dir:./inference/ch_det_data_50/all-sum-510/ +--save_log_path:null +--benchmark:True +null:null diff --git a/tests/prepare.sh b/tests/prepare.sh new file mode 100644 index 0000000000000000000000000000000000000000..2811cb3fc0c1fed95f9028d820bec9cb2201d3f7 --- /dev/null +++ b/tests/prepare.sh @@ -0,0 +1,77 @@ +#!/bin/bash +FILENAME=$1 +# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer'] +MODE=$2 + +dataline=$(cat ${FILENAME}) + +# parser params +IFS=$'\n' +lines=(${dataline}) +function func_parser_key(){ + strs=$1 + IFS=":" + array=(${strs}) + tmp=${array[0]} + echo ${tmp} +} +function func_parser_value(){ + strs=$1 + IFS=":" + array=(${strs}) + tmp=${array[1]} + echo ${tmp} +} +IFS=$'\n' +# The training params +model_name=$(func_parser_value "${lines[0]}") +train_model_list=$(func_parser_value "${lines[0]}") + +trainer_list=$(func_parser_value "${lines[10]}") + + +# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer'] +MODE=$2 +# prepare pretrained weights and dataset +wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams +wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar +cd pretrain_models && tar xf det_mv3_db_v2.0_train.tar && cd ../ + +if [ ${MODE} = "lite_train_infer" ];then + # pretrain lite train data + rm -rf ./train_data/icdar2015 + wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar + cd ./train_data/ && tar xf icdar2015_lite.tar + ln -s ./icdar2015_lite ./icdar2015 + cd ../ + epoch=10 + eval_batch_step=10 +elif [ ${MODE} = "whole_train_infer" ];then + rm -rf ./train_data/icdar2015 + wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar + cd ./train_data/ && tar xf icdar2015.tar && cd ../ + epoch=500 + eval_batch_step=200 +elif [ ${MODE} = "whole_infer" ];then + rm -rf ./train_data/icdar2015 + wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_infer.tar + cd ./train_data/ && tar xf icdar2015_infer.tar + ln -s ./icdar2015_infer ./icdar2015 + cd ../ + epoch=10 + eval_batch_step=10 +else + rm -rf ./train_data/icdar2015 + wget -nc -P ./train_data https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar + if [ ${model_name} = "ocr_det" ]; then + eval_model_name="ch_ppocr_mobile_v2.0_det_infer" + wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar + cd ./inference && tar xf ${eval_model_name}.tar && cd ../ + else + eval_model_name="ch_ppocr_mobile_v2.0_rec_train" + wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar + cd ./inference && tar xf ${eval_model_name}.tar && cd ../ + fi +fi + + diff --git a/tests/test.sh b/tests/test.sh new file mode 100644 index 0000000000000000000000000000000000000000..fde636fc1c70df7ce4a8d8fad38e71c08c56242d --- /dev/null +++ b/tests/test.sh @@ -0,0 +1,282 @@ +#!/bin/bash +FILENAME=$1 +# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer'] +MODE=$2 + +dataline=$(cat ${FILENAME}) + +# parser params +IFS=$'\n' +lines=(${dataline}) + +function func_parser_key(){ + strs=$1 + IFS=":" + array=(${strs}) + tmp=${array[0]} + echo ${tmp} +} +function func_parser_value(){ + strs=$1 + IFS=":" + array=(${strs}) + tmp=${array[1]} + echo ${tmp} +} +function func_set_params(){ + key=$1 + value=$2 + if [ ${key} = "null" ];then + echo " " + elif [[ ${value} = "null" ]] || [[ ${value} = " " ]] || [ ${#value} -le 0 ];then + echo " " + else + echo "${key}=${value}" + fi +} +function status_check(){ + last_status=$1 # the exit code + run_command=$2 + run_log=$3 + if [ $last_status -eq 0 ]; then + echo -e "\033[33m Run successfully with command - ${run_command}! \033[0m" | tee -a ${run_log} + else + echo -e "\033[33m Run failed with command - ${run_command}! \033[0m" | tee -a ${run_log} + fi +} + +IFS=$'\n' +# The training params +model_name=$(func_parser_value "${lines[1]}") +python=$(func_parser_value "${lines[2]}") +gpu_list=$(func_parser_value "${lines[3]}") +autocast_list=$(func_parser_value "${lines[4]}") +autocast_key=$(func_parser_key "${lines[4]}") +epoch_key=$(func_parser_key "${lines[5]}") +epoch_num=$(func_parser_value "${lines[5]}") +save_model_key=$(func_parser_key "${lines[6]}") +train_batch_key=$(func_parser_key "${lines[7]}") +train_batch_value=$(func_parser_value "${lines[7]}") +train_use_gpu_key=$(func_parser_key "${lines[8]}") +pretrain_model_key=$(func_parser_key "${lines[9]}") +pretrain_model_value=$(func_parser_value "${lines[9]}") +train_model_name=$(func_parser_value "${lines[10]}") +train_infer_img_dir=$(func_parser_value "${lines[11]}") +train_param_key1=$(func_parser_key "${lines[12]}") +train_param_value1=$(func_parser_value "${lines[12]}") + +trainer_list=$(func_parser_value "${lines[14]}") +trainer_norm=$(func_parser_key "${lines[15]}") +norm_trainer=$(func_parser_value "${lines[15]}") +pact_key=$(func_parser_key "${lines[16]}") +pact_trainer=$(func_parser_value "${lines[16]}") +fpgm_key=$(func_parser_key "${lines[17]}") +fpgm_trainer=$(func_parser_value "${lines[17]}") +distill_key=$(func_parser_key "${lines[18]}") +distill_trainer=$(func_parser_value "${lines[18]}") +trainer_key1=$(func_parser_key "${lines[19]}") +trainer_value1=$(func_parser_value "${lines[19]}") +trainer_key1=$(func_parser_key "${lines[20]}") +trainer_value2=$(func_parser_value "${lines[20]}") + +eval_py=$(func_parser_value "${lines[23]}") +eval_key1=$(func_parser_key "${lines[24]}") +eval_value1=$(func_parser_value "${lines[24]}") + +save_infer_key=$(func_parser_key "${lines[27]}") +export_weight=$(func_parser_key "${lines[28]}") +norm_export=$(func_parser_value "${lines[29]}") +pact_export=$(func_parser_value "${lines[30]}") +fpgm_export=$(func_parser_value "${lines[31]}") +distill_export=$(func_parser_value "${lines[32]}") +export_key1=$(func_parser_key "${lines[33]}") +export_value1=$(func_parser_value "${lines[33]}") +export_key2=$(func_parser_key "${lines[34]}") +export_value2=$(func_parser_value "${lines[34]}") + +inference_py=$(func_parser_value "${lines[36]}") +use_gpu_key=$(func_parser_key "${lines[37]}") +use_gpu_list=$(func_parser_value "${lines[37]}") +use_mkldnn_key=$(func_parser_key "${lines[38]}") +use_mkldnn_list=$(func_parser_value "${lines[38]}") +cpu_threads_key=$(func_parser_key "${lines[39]}") +cpu_threads_list=$(func_parser_value "${lines[39]}") +batch_size_key=$(func_parser_key "${lines[40]}") +batch_size_list=$(func_parser_value "${lines[40]}") +use_trt_key=$(func_parser_key "${lines[41]}") +use_trt_list=$(func_parser_value "${lines[41]}") +precision_key=$(func_parser_key "${lines[42]}") +precision_list=$(func_parser_value "${lines[42]}") +infer_model_key=$(func_parser_key "${lines[43]}") +infer_model=$(func_parser_value "${lines[43]}") +image_dir_key=$(func_parser_key "${lines[44]}") +infer_img_dir=$(func_parser_value "${lines[44]}") +save_log_key=$(func_parser_key "${lines[45]}") +benchmark_key=$(func_parser_key "${lines[46]}") +benchmark_value=$(func_parser_value "${lines[46]}") +infer_key2=$(func_parser_key "${lines[47]}") +infer_value2=$(func_parser_value "${lines[47]}") + +LOG_PATH="./tests/output" +mkdir -p ${LOG_PATH} +status_log="${LOG_PATH}/results.log" + + +function func_inference(){ + IFS='|' + _python=$1 + _script=$2 + _model_dir=$3 + _log_path=$4 + _img_dir=$5 + _flag_quant=$6 + # inference + for use_gpu in ${use_gpu_list[*]}; do + if [ ${use_gpu} = "False" ] && [ ${_flag_quant} = "True" ]; then + continue + fi + if [ ${use_gpu} = "False" ]; then + for use_mkldnn in ${use_mkldnn_list[*]}; do + for threads in ${cpu_threads_list[*]}; do + for batch_size in ${batch_size_list[*]}; do + _save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log" + #${image_dir_key}=${_img_dir} ${save_log_key}=${_save_log_path} --benchmark=True + set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}") + set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}") + command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${cpu_threads_key}=${threads} ${infer_model_key}=${_model_dir} ${batch_size_key}=${batch_size} ${set_infer_data} ${set_benchmark} > ${_save_log_path} 2>&1 " + eval $command + status_check $? "${command}" "${status_log}" + done + done + done + else + for use_trt in ${use_trt_list[*]}; do + for precision in ${precision_list[*]}; do + if [ ${use_trt} = "False" ] && [ ${precision} != "fp32" ]; then + continue + fi + if [ ${use_trt} = "False" ] && [ ${_flag_quant} = "True" ]; then + continue + fi + if [ ${precision} != "int8" ] && [ ${_flag_quant} = "True" ]; then + continue + fi + for batch_size in ${batch_size_list[*]}; do + _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log" + set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}") + set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}") + command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_trt_key}=${use_trt} ${precision_key}=${precision} ${infer_model_key}=${_model_dir} ${batch_size_key}=${batch_size} ${set_infer_data} ${set_benchmark} > ${_save_log_path} 2>&1 " + eval $command + status_check $? "${command}" "${status_log}" + done + done + done + fi + done +} + +if [ ${MODE} != "infer" ]; then + +IFS="|" +for gpu in ${gpu_list[*]}; do + use_gpu=True + if [ ${gpu} = "-1" ];then + use_gpu=False + env="" + elif [ ${#gpu} -le 1 ];then + env="export CUDA_VISIBLE_DEVICES=${gpu}" + eval ${env} + elif [ ${#gpu} -le 15 ];then + IFS="," + array=(${gpu}) + env="export CUDA_VISIBLE_DEVICES=${array[0]}" + IFS="|" + else + IFS=";" + array=(${gpu}) + ips=${array[0]} + gpu=${array[1]} + IFS="|" + env=" " + fi + for autocast in ${autocast_list[*]}; do + for trainer in ${trainer_list[*]}; do + flag_quant=False + if [ ${trainer} = ${pact_key} ]; then + run_train=${pact_trainer} + run_export=${pact_export} + flag_quant=True + elif [ ${trainer} = "${fpgm_key}" ]; then + run_train=${fpgm_trainer} + run_export=${fpgm_export} + elif [ ${trainer} = "${distill_key}" ]; then + run_train=${distill_trainer} + run_export=${distill_export} + elif [ ${trainer} = ${trainer_key1} ]; then + run_train=${trainer_value1} + run_export=${export_value1} + elif [[ ${trainer} = ${trainer_key2} ]]; then + run_train=${trainer_value2} + run_export=${export_value2} + else + run_train=${norm_trainer} + run_export=${norm_export} + fi + + if [ ${run_train} = "null" ]; then + continue + fi + + set_autocast=$(func_set_params "${autocast_key}" "${autocast}") + set_autocast=$(func_set_params "${epoch_key}" "${epoch_num}") + set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}") + set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}") + set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}") + + save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}" + if [ ${#gpu} -le 2 ];then # train with cpu or single gpu + cmd="${python} ${run_train} ${train_use_gpu_key}=${use_gpu} ${save_model_key}=${save_log} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} " + elif [ ${#gpu} -le 15 ];then # train with multi-gpu + cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${save_model_key}=${save_log} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1}" + else # train with multi-machine + cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${save_model_key}=${save_log} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1}" + fi + # run train + eval $cmd + status_check $? "${cmd}" "${status_log}" + + # run eval + if [ ${eval_py} != "null" ]; then + eval_cmd="${python} ${eval_py} ${save_model_key}=${save_log} ${pretrain_model_key}=${save_log}/${train_model_name}" + eval $eval_cmd + status_check $? "${eval_cmd}" "${status_log}" + fi + + if [ ${run_export} != "null" ]; then + # run export model + save_infer_path="${save_log}" + export_cmd="${python} ${run_export} ${save_model_key}=${save_log} ${export_weight}=${save_log}/${train_model_name} ${save_infer_key}=${save_infer_path}" + eval $export_cmd + status_check $? "${export_cmd}" "${status_log}" + + #run inference + eval $env + save_infer_path="${save_log}" + func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}" + eval "unset CUDA_VISIBLE_DEVICES" + fi + done + done +done + +else + GPUID=$3 + if [ ${#GPUID} -le 0 ];then + env=" " + else + env="export CUDA_VISIBLE_DEVICES=${GPUID}" + fi + echo $env + #run inference + func_inference "${python}" "${inference_py}" "${infer_model}" "${LOG_PATH}" "${infer_img_dir}" "False" +fi