提交 ee6fe424 编写于 作者: T tink2123

fix seed

上级 d7e7e9e4
...@@ -53,7 +53,7 @@ def compute_partial_repr(input_points, control_points): ...@@ -53,7 +53,7 @@ def compute_partial_repr(input_points, control_points):
1] 1]
repr_matrix = 0.5 * pairwise_dist * paddle.log(pairwise_dist) repr_matrix = 0.5 * pairwise_dist * paddle.log(pairwise_dist)
# fix numerical error for 0 * log(0), substitute all nan with 0 # fix numerical error for 0 * log(0), substitute all nan with 0
mask = repr_matrix != repr_matrix mask = np.array(repr_matrix != repr_matrix)
repr_matrix[mask] = 0 repr_matrix[mask] = 0
return repr_matrix return repr_matrix
......
Global:
use_gpu: True
epoch_num: 400
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/rec/seed
save_epoch_step: 3
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [0, 2000]
cal_metric_during_train: True
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path: ppocr/utils/EN_symbol_dict.txt
max_text_length: 100
infer_mode: False
use_space_char: False
save_res_path: ./output/rec/predicts_seed.txt
Optimizer:
name: Adadelta
weight_deacy: 0.0
momentum: 0.9
lr:
name: Piecewise
decay_epochs: [4,5,8]
values: [1.0, 0.1, 0.01]
regularizer:
name: 'L2'
factor: 2.0e-05
Architecture:
model_type: rec
algorithm: SEED
Transform:
name: STN_ON
tps_inputsize: [32, 64]
tps_outputsize: [32, 100]
num_control_points: 20
tps_margins: [0.05,0.05]
stn_activation: none
Backbone:
name: ResNet_ASTER
Head:
name: AsterHead # AttentionHead
sDim: 512
attDim: 512
max_len_labels: 100
Loss:
name: AsterLoss
PostProcess:
name: SEEDLabelDecode
Metric:
name: RecMetric
main_indicator: acc
is_filter: True
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/ic15_data/
label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"]
transforms:
- Fasttext:
path: "./cc.en.300.bin"
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- SEEDLabelEncode: # Class handling label
- RecResizeImg:
character_type: en
image_shape: [3, 64, 256]
padding: False
- KeepKeys:
keep_keys: ['image', 'label', 'length', 'fast_label'] # dataloader will return list in this order
loader:
shuffle: True
batch_size_per_card: 256
drop_last: True
num_workers: 6
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/ic15_data
label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- SEEDLabelEncode: # Class handling label
- RecResizeImg:
character_type: en
image_shape: [3, 64, 256]
padding: False
- KeepKeys:
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
loader:
shuffle: False
drop_last: True
batch_size_per_card: 256
num_workers: 4
===========================train_params===========================
model_name:rec_resnet_stn_bilstm_att_v2.0
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_resnet_stn_bilstm_att_v2.0/rec_icdar15_train.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_resnet_stn_bilstm_att_v2.0/rec_icdar15_train.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/rec_resnet_stn_bilstm_att_v2.0/rec_icdar15_train.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/rec_resnet_stn_bilstm_att_v2.0/rec_icdar15_train.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|fp16|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
...@@ -52,7 +52,10 @@ if [ ${MODE} = "lite_train_lite_infer" ];then ...@@ -52,7 +52,10 @@ if [ ${MODE} = "lite_train_lite_infer" ];then
wget -nc -P ./train_data/ wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/total_text_lite.tar --no-check-certificate wget -nc -P ./train_data/ wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/total_text_lite.tar --no-check-certificate
cd ./train_data && tar xf total_text_lite.tar && ln -s total_text && cd ../ cd ./train_data && tar xf total_text_lite.tar && ln -s total_text && cd ../
fi fi
if [ ${model_name} == "rec_resnet_stn_bilstm_att_v2.0" ]; then
wget -nc https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.en.300.bin.gz
gunzip cc.en.300.bin.gz
fi
elif [ ${MODE} = "whole_train_whole_infer" ];then elif [ ${MODE} = "whole_train_whole_infer" ];then
wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams --no-check-certificate wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams --no-check-certificate
rm -rf ./train_data/icdar2015 rm -rf ./train_data/icdar2015
...@@ -128,11 +131,6 @@ elif [ ${MODE} = "whole_infer" ];then ...@@ -128,11 +131,6 @@ elif [ ${MODE} = "whole_infer" ];then
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar --no-check-certificate wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar --no-check-certificate
cd ./inference && tar xf ${eval_model_name}.tar && tar xf ch_det_data_50.tar && cd ../ cd ./inference && tar xf ${eval_model_name}.tar && tar xf ch_det_data_50.tar && cd ../
fi fi
elif [ ${model_name} = "ch_PPOCRv2_det" ]; then
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/e2e_server_pgnetA_infer.tar --no-check-certificate
cd ./inference && tar xf e2e_server_pgnetA_infer.tar && tar xf ch_det_data_50.tar && cd ../
fi
if [ ${model_name} == "en_server_pgnetA" ]; then if [ ${model_name} == "en_server_pgnetA" ]; then
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/en_server_pgnetA.tar --no-check-certificate wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/en_server_pgnetA.tar --no-check-certificate
cd ./inference && tar xf en_server_pgnetA.tar && cd ../ cd ./inference && tar xf en_server_pgnetA.tar && cd ../
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册