diff --git a/doc/table/table.jpg b/doc/table/table.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..3daa619e52dc2471df62ea7767be3bff350b623f
Binary files /dev/null and b/doc/table/table.jpg differ
diff --git a/ppstructure/README.md b/ppstructure/README.md
index 2833bd0767d9fd89a57119dc557117861e5e9f58..0303fcb43a8382693ff16df20e7511d6cc06237c 100644
--- a/ppstructure/README.md
+++ b/ppstructure/README.md
@@ -103,15 +103,25 @@ Table OCR converts table image into excel documents, which include the detection
Use the following commands to complete the inference.
```python
-python3 table/predict_system.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --output=../output/table --vis_font_path=../doc/fonts/simfang.ttf
+cd PaddleOCR/ppstructure
+
+# download model
+mkdir inference && cd inference
+# Download the detection model of the ultra-lightweight Chinese OCR model and uncompress it
+wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_det_infer.tar
+# Download the recognition model of the ultra-lightweight Chinese OCR model and uncompress it
+wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar
+# Download the table structure model of the ultra-lightweight Chinese OCR model and uncompress it
+wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar
+cd ..
+
+python3 table/predict_system.py --det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer --rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=ch --det_limit_side_len=736 --det_limit_type=min --output=../output/table --vis_font_path=../doc/fonts/simfang.ttf
```
-After running, each image will have a directory with the same name under the directory specified in the output field. Each table in the picture will be stored as an excel, and the excel file name will be the coordinates of the table in the image.
+After running, each image will have a directory with the same name under the directory specified in the output field. Each table in the picture will be stored as an excel and figure area will be cropped and saved, the excel and image file name will be the coordinates of the table in the image.
**Model List**
|model name|description|config|model size|download|
| --- | --- | --- | --- | --- |
-|en_ppocr_mobile_v2.0_table_det|Text detection in English table scene|[ch_det_mv3_db_v2.0.yml](../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)| 4.7M |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar) |
-|en_ppocr_mobile_v2.0_table_rec|Text recognition in English table scene|[rec_chinese_lite_train_v2.0.yml](..//configs/rec/rec_mv3_none_bilstm_ctc.yml)|6.9M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar) |
|en_ppocr_mobile_v2.0_table_structure|Table structure prediction for English table scenarios|[table_mv3.yml](../configs/table/table_mv3.yml)|18.6M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar) |
\ No newline at end of file
diff --git a/ppstructure/README_ch.md b/ppstructure/README_ch.md
index 4f961cfc3f4e5686583191467c9cb313cd5c3a52..709757d5d4b2b124931d7f1c3638651f23312843 100644
--- a/ppstructure/README_ch.md
+++ b/ppstructure/README_ch.md
@@ -97,7 +97,7 @@ dict 里各个字段说明如下
版面分析对文档数据进行区域分类,其中包括版面分析工具的Python脚本使用、提取指定类别检测框、性能指标以及自定义训练版面分析模型,详细内容可以参考[文档](layout/README.md)。
-### 2.2 表格识别
+### 2.2 表格结构化
Table OCR将表格图片转换为excel文档,其中包含对于表格文本的检测和识别以及对于表格结构和单元格坐标的预测,详细说明参考[文档](table/README_ch.md)
@@ -106,14 +106,24 @@ Table OCR将表格图片转换为excel文档,其中包含对于表格文本的
使用如下命令即可完成预测引擎的推理
```python
-python3 table/predict_system.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --output=../output/table --vis_font_path=../doc/fonts/simfang.ttf
+cd PaddleOCR/ppstructure
+
+# 下载模型
+mkdir inference && cd inference
+# 下载超轻量级中文OCR模型的检测模型并解压
+wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_det_infer.tar
+# 下载超轻量级中文OCR模型的识别模型并解压
+wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar
+# 下载超轻量级英文表格英寸模型并解压
+wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar
+cd ..
+
+python3 table/predict_system.py --det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer --rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=ch --det_limit_side_len=736 --det_limit_type=min --output=../output/table --vis_font_path=../doc/fonts/simfang.ttf
```
-运行完成后,每张图片会output字段指定的目录下有一个同名目录,图片里的每个表格会存储为一个excel,excel文件名为表格在图片里的坐标。
+运行完成后,每张图片会在`output`字段指定的目录下有一个同名目录,图片里的每个表格会存储为一个excel,图片区域会被裁剪之后保存下来,excel文件和图片名名为表格在图片里的坐标。
**Model List**
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
| --- | --- | --- | --- | --- |
-|en_ppocr_mobile_v2.0_table_det|英文表格场景的文字检测|[ch_det_mv3_db_v2.0.yml](../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)| 4.7M |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar) |
-|en_ppocr_mobile_v2.0_table_rec|英文表格场景的文字识别|[rec_chinese_lite_train_v2.0.yml](../configs/rec/rec_mv3_none_bilstm_ctc.yml)|6.9M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar) |
|en_ppocr_mobile_v2.0_table_structure|英文表格场景的表格结构预测|[table_mv3.yml](../configs/table/table_mv3.yml)|18.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar) |
\ No newline at end of file
diff --git a/ppstructure/table/README.md b/ppstructure/table/README.md
index c538db275844e8eb21f405728fe09ed10c070760..4c3d789aba1608333af1d23d275b23ff0a612af1 100644
--- a/ppstructure/table/README.md
+++ b/ppstructure/table/README.md
@@ -17,8 +17,26 @@ The table ocr flow chart is as follows
## 2. How to use
+### 2.1 quick start
-### 2.1 Train
+```python
+cd PaddleOCR/ppstructure
+
+# download model
+mkdir inference && cd inference
+# Download the detection model of the ultra-lightweight Chinese OCR model and uncompress it
+wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_det_infer.tar
+# Download the recognition model of the ultra-lightweight Chinese OCR model and uncompress it
+wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar
+# Download the table structure model of the ultra-lightweight Chinese OCR model and uncompress it
+wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar
+cd ..
+
+python3 table/predict_table.py --det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer --rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer --image_dir=../doc/table/table.jpg --rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=ch --det_limit_side_len=736 --det_limit_type=min --output ../output/table
+```
+After running, the excel sheet of each picture will be saved in the directory specified by the output field
+
+### 2.2 Train
In this chapter, we only introduce the training of the table structure model, For model training of [text detection](../../doc/doc_en/detection_en.md) and [text recognition](../../doc/doc_en/recognition_en.md), please refer to the corresponding documents
@@ -48,7 +66,7 @@ python3 tools/train.py -c configs/table/table_mv3.yml -o Global.checkpoints=./yo
**Note**: The priority of `Global.checkpoints` is higher than that of `Global.pretrain_weights`, that is, when two parameters are specified at the same time, the model specified by `Global.checkpoints` will be loaded first. If the model path specified by `Global.checkpoints` is wrong, the one specified by `Global.pretrain_weights` will be loaded.
-### 2.2 Eval
+### 2.3 Eval
The table uses TEDS (Tree-Edit-Distance-based Similarity) as the evaluation metric of the model. Before the model evaluation, the three models in the pipeline need to be exported as inference models (we have provided them), and the gt for evaluation needs to be prepared. Examples of gt are as follows:
```json
@@ -70,7 +88,7 @@ python3 table/eval_table.py --det_model_dir=path/to/det_model_dir --rec_model_di
```
-### 2.3 Inference
+### 2.4 Inference
```python
cd PaddleOCR/ppstructure
diff --git a/ppstructure/table/README_ch.md b/ppstructure/table/README_ch.md
index 5981dab4b85d751ad26a9ba08ca4c9056d253961..a1bd2442641dd89653aa83372c77d615cb9997c3 100644
--- a/ppstructure/table/README_ch.md
+++ b/ppstructure/table/README_ch.md
@@ -1,6 +1,6 @@
-# Table OCR
+# 表格结构化
-## 1. Table OCR pineline
+## 1. 表格结构化 pineline
表格的ocr主要包含三个模型
1. 单行文本检测-DB
2. 单行文本识别-CRNN
@@ -19,7 +19,26 @@
## 2. 使用
-### 2.1 训练
+### 2.1 快速开始
+
+```python
+cd PaddleOCR/ppstructure
+
+# 下载模型
+mkdir inference && cd inference
+# 下载超轻量级中文OCR模型的检测模型并解压
+wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_det_infer.tar
+# 下载超轻量级中文OCR模型的识别模型并解压
+wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar
+# 下载超轻量级英文表格英寸模型并解压
+wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar
+cd ..
+# 执行预测
+python3 table/predict_table.py --det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer --rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer --image_dir=../doc/table/table.jpg --rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=ch --det_limit_side_len=736 --det_limit_type=min --output ../output/table
+```
+运行完成后,每张图片的excel表格会保存到output字段指定的目录下
+
+### 2.2 训练
在这一章节中,我们仅介绍表格结构模型的训练,[文字检测](../../doc/doc_ch/detection.md)和[文字识别](../../doc/doc_ch/recognition.md)的模型训练请参考对应的文档。
#### 数据准备
@@ -46,7 +65,7 @@ python3 tools/train.py -c configs/table/table_mv3.yml -o Global.checkpoints=./yo
**注意**:`Global.checkpoints`的优先级高于`Global.pretrain_weights`的优先级,即同时指定两个参数时,优先加载`Global.checkpoints`指定的模型,如果`Global.checkpoints`指定的模型路径有误,会加载`Global.pretrain_weights`指定的模型。
-### 2.2 评估
+### 2.3 评估
表格使用 TEDS(Tree-Edit-Distance-based Similarity) 作为模型的评估指标。在进行模型评估之前,需要将pipeline中的三个模型分别导出为inference模型(我们已经提供好),还需要准备评估的gt, gt示例如下:
```json
@@ -56,7 +75,7 @@ python3 tools/train.py -c configs/table/table_mv3.yml -o Global.checkpoints=./yo
[["", "F", "e", "a", "t", "u", "r", "e", ""], ["", "G", "b", "3", " ", "+", ""], ["", "G", "b", "3", " ", "-", ""], ["", "P", "a", "t", "i", "e", "n", "t", "s", ""], ["6", "2"], ["4", "5"]]
]}
```
-json 中,key为图片名,value为对应的gt,gt是一个由四个item组成的list,每个item分别为
+json 中,key为图片名,value为对应的gt,gt是一个由三个item组成的list,每个item分别为
1. 表格结构的html字符串list
2. 每个cell的坐标 (不包括cell里文字为空的)
3. 每个cell里的文字信息 (不包括cell里文字为空的)
@@ -67,10 +86,9 @@ cd PaddleOCR/ppstructure
python3 table/eval_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --gt_path=path/to/gt.json
```
+### 2.4 预测
-### 2.3 预测
```python
cd PaddleOCR/ppstructure
python3 table/predict_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --output ../output/table
-```
-运行完成后,每张图片的excel表格会保存到output字段指定的目录下
+```
\ No newline at end of file