diff --git a/deploy/paddle2onnx/readme_ch.md b/deploy/paddle2onnx/readme_ch.md
index 8e821892142d65caddd6fa3bd8ff24a372fe9a5d..5004cab8338ee7e809033dcf5b8f2184b0da065a 100644
--- a/deploy/paddle2onnx/readme_ch.md
+++ b/deploy/paddle2onnx/readme_ch.md
@@ -39,14 +39,14 @@ python3.7 -m pip install onnxruntime==1.9.0
有两种方式获取Paddle静态图模型:在 [model_list](../../doc/doc_ch/models_list.md) 中下载PaddleOCR提供的预测模型;
参考[模型导出说明](../../doc/doc_ch/inference.md#训练模型转inference模型)把训练好的权重转为 inference_model。
-以 ppocr 中文检测、识别、分类模型为例:
+以 PP-OCRv3 中文检测、识别、分类模型为例:
```
-wget -nc -P ./inference https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar
-cd ./inference && tar xf ch_PP-OCRv2_det_infer.tar && cd ..
+wget -nc -P ./inference https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar
+cd ./inference && tar xf ch_PP-OCRv3_det_infer.tar && cd ..
-wget -nc -P ./inference https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar
-cd ./inference && tar xf ch_PP-OCRv2_rec_infer.tar && cd ..
+wget -nc -P ./inference https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar
+cd ./inference && tar xf ch_PP-OCRv3_rec_infer.tar && cd ..
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
cd ./inference && tar xf ch_ppocr_mobile_v2.0_cls_infer.tar && cd ..
@@ -57,7 +57,7 @@ cd ./inference && tar xf ch_ppocr_mobile_v2.0_cls_infer.tar && cd ..
使用 Paddle2ONNX 将Paddle静态图模型转换为ONNX模型格式:
```
-paddle2onnx --model_dir ./inference/ch_PP-OCRv2_det_infer \
+paddle2onnx --model_dir ./inference/ch_PP-OCRv3_det_infer \
--model_filename inference.pdmodel \
--params_filename inference.pdiparams \
--save_file ./inference/det_onnx/model.onnx \
@@ -65,7 +65,7 @@ paddle2onnx --model_dir ./inference/ch_PP-OCRv2_det_infer \
--input_shape_dict="{'x':[-1,3,-1,-1]}" \
--enable_onnx_checker True
-paddle2onnx --model_dir ./inference/ch_PP-OCRv2_rec_infer \
+paddle2onnx --model_dir ./inference/ch_PP-OCRv3_rec_infer \
--model_filename inference.pdmodel \
--params_filename inference.pdiparams \
--save_file ./inference/rec_onnx/model.onnx \
@@ -105,8 +105,8 @@ python3.7 tools/infer/predict_system.py --use_gpu=False --use_onnx=True \
```
python3.7 tools/infer/predict_system.py --use_gpu=False \
--cls_model_dir=./inference/ch_ppocr_mobile_v2.0_cls_infer \
---rec_model_dir=./inference/ch_PP-OCRv2_rec_infer \
---det_model_dir=./inference/ch_PP-OCRv2_det_infer \
+--rec_model_dir=./inference/ch_PP-OCRv3_rec_infer \
+--det_model_dir=./inference/ch_PP-OCRv3_det_infer \
--image_dir=./deploy/lite/imgs/lite_demo.png
```
diff --git a/deploy/pdserving/README.md b/deploy/pdserving/README.md
index d3ba7d4cfbabb111831a6ecbce28c1ac352066fe..55e03c4c2654f336ed942ae03e61e88b61940006 100644
--- a/deploy/pdserving/README.md
+++ b/deploy/pdserving/README.md
@@ -15,6 +15,14 @@ Some Key Features of Paddle Serving:
- Industrial serving features supported, such as models management, online loading, online A/B testing etc.
- Highly concurrent and efficient communication between clients and servers supported.
+PaddleServing supports deployment in multiple languages. In this example, two deployment methods, python pipeline and C++, are provided. The comparison between the two is as follows:
+
+| Language | Speed | Secondary development | Do you need to compile |
+|-----|-----|---------|------------|
+| C++ | fast | Slightly difficult | Single model prediction does not need to be compiled, multi-model concatenation needs to be compiled |
+| python | general | easy | single-model/multi-model no compilation required |
+
+
The introduction and tutorial of Paddle Serving service deployment framework reference [document](https://github.com/PaddlePaddle/Serving/blob/develop/README.md).
@@ -25,6 +33,7 @@ The introduction and tutorial of Paddle Serving service deployment framework ref
- [Environmental preparation](#environmental-preparation)
- [Model conversion](#model-conversion)
- [Paddle Serving pipeline deployment](#paddle-serving-pipeline-deployment)
+ - [Paddle Serving C++ deployment](#C++)
- [WINDOWS Users](#windows-users)
- [FAQ](#faq)
@@ -41,23 +50,23 @@ PaddleOCR operating environment and Paddle Serving operating environment are nee
```bash
# Install serving which used to start the service
-wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.7.0.post102-py3-none-any.whl
-pip3 install paddle_serving_server_gpu-0.7.0.post102-py3-none-any.whl
+wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.3.post102-py3-none-any.whl
+pip3 install paddle_serving_server_gpu-0.8.3.post102-py3-none-any.whl
# Install paddle-serving-server for cuda10.1
-# wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.7.0.post101-py3-none-any.whl
-# pip3 install paddle_serving_server_gpu-0.7.0.post101-py3-none-any.whl
+# wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.3.post101-py3-none-any.whl
+# pip3 install paddle_serving_server_gpu-0.8.3.post101-py3-none-any.whl
# Install serving which used to start the service
-wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.7.0-cp37-none-any.whl
-pip3 install paddle_serving_client-0.7.0-cp37-none-any.whl
+wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.8.3-cp37-none-any.whl
+pip3 install paddle_serving_client-0.8.3-cp37-none-any.whl
# Install serving-app
-wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_app-0.7.0-py3-none-any.whl
-pip3 install paddle_serving_app-0.7.0-py3-none-any.whl
+wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_app-0.8.3-py3-none-any.whl
+pip3 install paddle_serving_app-0.8.3-py3-none-any.whl
```
- **note:** If you want to install the latest version of PaddleServing, refer to [link](https://github.com/PaddlePaddle/Serving/blob/v0.7.0/doc/Latest_Packages_CN.md).
+ **note:** If you want to install the latest version of PaddleServing, refer to [link](https://github.com/PaddlePaddle/Serving/blob/v0.8.3/doc/Latest_Packages_CN.md).
@@ -67,37 +76,37 @@ When using PaddleServing for service deployment, you need to convert the saved i
Firstly, download the [inference model](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/README_ch.md#pp-ocr%E7%B3%BB%E5%88%97%E6%A8%A1%E5%9E%8B%E5%88%97%E8%A1%A8%E6%9B%B4%E6%96%B0%E4%B8%AD) of PPOCR
```
# Download and unzip the OCR text detection model
-wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar -O ch_PP-OCRv2_det_infer.tar && tar -xf ch_PP-OCRv2_det_infer.tar
+wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar -O ch_PP-OCRv3_det_infer.tar && tar -xf ch_PP-OCRv3_det_infer.tar
# Download and unzip the OCR text recognition model
-wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar -O ch_PP-OCRv2_rec_infer.tar && tar -xf ch_PP-OCRv2_rec_infer.tar
+wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar -O ch_PP-OCRv3_rec_infer.tar && tar -xf ch_PP-OCRv3_rec_infer.tar
```
Then, you can use installed paddle_serving_client tool to convert inference model to mobile model.
```
# Detection model conversion
-python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv2_det_infer/ \
+python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv3_det_infer/ \
--model_filename inference.pdmodel \
--params_filename inference.pdiparams \
- --serving_server ./ppocr_det_mobile_2.0_serving/ \
- --serving_client ./ppocr_det_mobile_2.0_client/
+ --serving_server ./ppocr_det_v3_serving/ \
+ --serving_client ./ppocr_det_v3_client/
# Recognition model conversion
-python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv2_rec_infer/ \
+python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv3_rec_infer/ \
--model_filename inference.pdmodel \
--params_filename inference.pdiparams \
- --serving_server ./ppocr_rec_mobile_2.0_serving/ \
- --serving_client ./ppocr_rec_mobile_2.0_client/
+ --serving_server ./ppocr_rec_v3_serving/ \
+ --serving_client ./ppocr_rec_v3_client/
```
-After the detection model is converted, there will be additional folders of `ppocr_det_mobile_2.0_serving` and `ppocr_det_mobile_2.0_client` in the current folder, with the following format:
+After the detection model is converted, there will be additional folders of `ppocr_det_v3_serving` and `ppocr_det_v3_client` in the current folder, with the following format:
```
-|- ppocr_det_mobile_2.0_serving/
+|- ppocr_det_v3_serving/
|- __model__
|- __params__
|- serving_server_conf.prototxt
|- serving_server_conf.stream.prototxt
-|- ppocr_det_mobile_2.0_client
+|- ppocr_det_v3_client
|- serving_client_conf.prototxt
|- serving_client_conf.stream.prototxt
@@ -193,16 +202,13 @@ The recognition model is the same.
2021-05-13 03:42:36,979 chl2(In: ['rec'], Out: ['@DAGExecutor']) size[0/0]
```
+
## C++ Serving
Service deployment based on python obviously has the advantage of convenient secondary development. However, the real application often needs to pursue better performance. PaddleServing also provides a more performant C++ deployment version.
The C++ service deployment is the same as python in the environment setup and data preparation stages, the difference is when the service is started and the client sends requests.
-| Language | Speed | Secondary development | Do you need to compile |
-|-----|-----|---------|------------|
-| C++ | fast | Slightly difficult | Single model prediction does not need to be compiled, multi-model concatenation needs to be compiled |
-| python | general | easy | single-model/multi-model no compilation required |
1. Compile Serving
@@ -211,7 +217,7 @@ The C++ service deployment is the same as python in the environment setup and da
2. Run the following command to start the service.
```
# Start the service and save the running log in log.txt
- python3 -m paddle_serving_server.serve --model ppocrv2_det_serving ppocrv2_rec_serving --op GeneralDetectionOp GeneralInferOp --port 9293 &>log.txt &
+ python3 -m paddle_serving_server.serve --model ppocr_det_v3_serving ppocr_rec_v3_serving --op GeneralDetectionOp GeneralInferOp --port 9293 &>log.txt &
```
After the service is successfully started, a log similar to the following will be printed in log.txt
![](./imgs/start_server.png)
@@ -219,7 +225,7 @@ The C++ service deployment is the same as python in the environment setup and da
3. Send service request
Due to the need for pre and post-processing in the C++Server part, in order to speed up the input to the C++Server is only the base64 encoded string of the picture, it needs to be manually modified
- Change the feed_type field and shape field in ppocrv2_det_client/serving_client_conf.prototxt to the following:
+ Change the feed_type field and shape field in ppocr_det_v3_client/serving_client_conf.prototxt to the following:
```
feed_var {
@@ -234,7 +240,7 @@ The C++ service deployment is the same as python in the environment setup and da
start the client:
```
- python3 ocr_cpp_client.py ppocrv2_det_client ppocrv2_rec_client
+ python3 ocr_cpp_client.py ppocr_det_v3_client ppocr_rec_v3_client
```
After successfully running, the predicted result of the model will be printed in the cmd window. An example of the result is:
![](./imgs/results.png)
diff --git a/deploy/pdserving/README_CN.md b/deploy/pdserving/README_CN.md
index 7d6169569f92d927312ec6ba8ff667d613c4bfa7..0891611db5f39d322473354f7d988b10afa78cbd 100644
--- a/deploy/pdserving/README_CN.md
+++ b/deploy/pdserving/README_CN.md
@@ -9,13 +9,21 @@ PaddleOCR提供2种服务部署方式:
# 基于PaddleServing的服务部署
-本文档将介绍如何使用[PaddleServing](https://github.com/PaddlePaddle/Serving/blob/develop/README_CN.md)工具部署PP-OCR动态图模型的pipeline在线服务。
+本文档将介绍如何使用[PaddleServing](https://github.com/PaddlePaddle/Serving/blob/develop/README_CN.md) 工具部署PP-OCR动态图模型的pipeline在线服务。
相比较于hubserving部署,PaddleServing具备以下优点:
- 支持客户端和服务端之间高并发和高效通信
- 支持 工业级的服务能力 例如模型管理,在线加载,在线A/B测试等
- 支持 多种编程语言 开发客户端,例如C++, Python和Java
+PaddleServing 支持多种语言部署,本例中提供了python pipeline 和 C++ 两种部署方式,两者的对比如下:
+
+| 语言 | 速度 | 二次开发 | 是否需要编译 |
+|-----|-----|---------|------------|
+| C++ | 很快 | 略有难度 | 单模型预测无需编译,多模型串联需要编译 |
+| python | 一般 | 容易 | 单模型/多模型 均无需编译|
+
+
更多有关PaddleServing服务化部署框架介绍和使用教程参考[文档](https://github.com/PaddlePaddle/Serving/blob/develop/README_CN.md)。
AIStudio演示案例可参考 [基于PaddleServing的OCR服务化部署实战](https://aistudio.baidu.com/aistudio/projectdetail/3630726)。
@@ -24,6 +32,7 @@ AIStudio演示案例可参考 [基于PaddleServing的OCR服务化部署实战](h
- [环境准备](#环境准备)
- [模型转换](#模型转换)
- [Paddle Serving pipeline部署](#部署)
+- [Paddle Serving C++部署](#C++)
- [Windows用户](#Windows用户)
- [FAQ](#FAQ)
@@ -34,26 +43,33 @@ AIStudio演示案例可参考 [基于PaddleServing的OCR服务化部署实战](h
- 准备PaddleOCR的运行环境[链接](../../doc/doc_ch/installation.md)
+ ```
+ git clone https://github.com/PaddlePaddle/PaddleOCR
+
+ # 进入到工作目录
+ cd PaddleOCR/deploy/pdserving/
+ ```
+
- 准备PaddleServing的运行环境,步骤如下
```bash
# 安装serving,用于启动服务
-wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.7.0.post102-py3-none-any.whl
-pip3 install paddle_serving_server_gpu-0.7.0.post102-py3-none-any.whl
+wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.3.post102-py3-none-any.whl
+pip3 install paddle_serving_server_gpu-0.8.3.post102-py3-none-any.whl
# 如果是cuda10.1环境,可以使用下面的命令安装paddle-serving-server
-# wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.7.0.post101-py3-none-any.whl
-# pip3 install paddle_serving_server_gpu-0.7.0.post101-py3-none-any.whl
+# wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.3.post101-py3-none-any.whl
+# pip3 install paddle_serving_server_gpu-0.8.3.post101-py3-none-any.whl
# 安装client,用于向服务发送请求
-wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.7.0-cp37-none-any.whl
-pip3 install paddle_serving_client-0.7.0-cp37-none-any.whl
+wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.8.3-cp37-none-any.whl
+pip3 install paddle_serving_client-0.8.3-cp37-none-any.whl
# 安装serving-app
-wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_app-0.7.0-py3-none-any.whl
-pip3 install paddle_serving_app-0.7.0-py3-none-any.whl
+wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_app-0.8.3-py3-none-any.whl
+pip3 install paddle_serving_app-0.8.3-py3-none-any.whl
```
-**Note:** 如果要安装最新版本的PaddleServing参考[链接](https://github.com/PaddlePaddle/Serving/blob/v0.7.0/doc/Latest_Packages_CN.md)。
+**Note:** 如果要安装最新版本的PaddleServing参考[链接](https://github.com/PaddlePaddle/Serving/blob/v0.8.3/doc/Latest_Packages_CN.md)。
## 模型转换
@@ -64,38 +80,38 @@ pip3 install paddle_serving_app-0.7.0-py3-none-any.whl
```bash
# 下载并解压 OCR 文本检测模型
-wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar -O ch_PP-OCRv2_det_infer.tar && tar -xf ch_PP-OCRv2_det_infer.tar
+wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar -O ch_PP-OCRv3_det_infer.tar && tar -xf ch_PP-OCRv3_det_infer.tar
# 下载并解压 OCR 文本识别模型
-wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar -O ch_PP-OCRv2_rec_infer.tar && tar -xf ch_PP-OCRv2_rec_infer.tar
+wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar -O ch_PP-OCRv3_rec_infer.tar && tar -xf ch_PP-OCRv3_rec_infer.tar
```
接下来,用安装的paddle_serving_client把下载的inference模型转换成易于server部署的模型格式。
```bash
# 转换检测模型
-python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv2_det_infer/ \
+python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv3_det_infer/ \
--model_filename inference.pdmodel \
--params_filename inference.pdiparams \
- --serving_server ./ppocr_det_mobile_2.0_serving/ \
- --serving_client ./ppocr_det_mobile_2.0_client/
+ --serving_server ./ppocr_det_v3_serving/ \
+ --serving_client ./ppocr_det_v3_client/
# 转换识别模型
-python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv2_rec_infer/ \
+python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv3_rec_infer/ \
--model_filename inference.pdmodel \
--params_filename inference.pdiparams \
- --serving_server ./ppocr_rec_mobile_2.0_serving/ \
- --serving_client ./ppocr_rec_mobile_2.0_client/
+ --serving_server ./ppocr_rec_v3_serving/ \
+ --serving_client ./ppocr_rec_v3_client/
```
-检测模型转换完成后,会在当前文件夹多出`ppocr_det_mobile_2.0_serving` 和`ppocr_det_mobile_2.0_client`的文件夹,具备如下格式:
+检测模型转换完成后,会在当前文件夹多出`ppocr_det_v3_serving` 和`ppocr_det_v3_client`的文件夹,具备如下格式:
```
-|- ppocr_det_mobile_2.0_serving/
+|- ppocr_det_v3_serving/
|- __model__
|- __params__
|- serving_server_conf.prototxt
|- serving_server_conf.stream.prototxt
-|- ppocr_det_mobile_2.0_client
+|- ppocr_det_v3_client
|- serving_client_conf.prototxt
|- serving_client_conf.stream.prototxt
@@ -105,13 +121,8 @@ python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv2_rec_infer/ \
## Paddle Serving pipeline部署
-1. 下载PaddleOCR代码,若已下载可跳过此步骤
- ```
- git clone https://github.com/PaddlePaddle/PaddleOCR
+1. 确认工作目录下文件结构:
- # 进入到工作目录
- cd PaddleOCR/deploy/pdserving/
- ```
pdserver目录包含启动pipeline服务和发送预测请求的代码,包括:
```
__init__.py
@@ -196,16 +207,12 @@ python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv2_rec_infer/ \
C++ 服务部署在环境搭建和数据准备阶段与 python 相同,区别在于启动服务和客户端发送请求时不同。
-| 语言 | 速度 | 二次开发 | 是否需要编译 |
-|-----|-----|---------|------------|
-| C++ | 很快 | 略有难度 | 单模型预测无需编译,多模型串联需要编译 |
-| python | 一般 | 容易 | 单模型/多模型 均无需编译|
-
1. 准备 Serving 环境
为了提高预测性能,C++ 服务同样提供了多模型串联服务。与python pipeline服务不同,多模型串联的过程中需要将模型前后处理代码写在服务端,因此需要在本地重新编译生成serving。
首先需要下载Serving代码库, 把OCR文本检测预处理相关代码替换到Serving库中
+
```
git clone https://github.com/PaddlePaddle/Serving
@@ -223,7 +230,7 @@ cp -rf general_detection_op.cpp Serving/core/general-server/op
```
# 启动服务,运行日志保存在log.txt
- python3 -m paddle_serving_server.serve --model ppocrv2_det_serving ppocrv2_rec_serving --op GeneralDetectionOp GeneralInferOp --port 9293 &>log.txt &
+ python3 -m paddle_serving_server.serve --model ppocr_det_v3_serving ppocr_rec_v3_serving --op GeneralDetectionOp GeneralInferOp --port 9293 &>log.txt &
```
成功启动服务后,log.txt中会打印类似如下日志
![](./imgs/start_server.png)
@@ -231,7 +238,7 @@ cp -rf general_detection_op.cpp Serving/core/general-server/op
3. 发送服务请求:
由于需要在C++Server部分进行前后处理,为了加速传入C++Server的仅仅是图片的base64编码的字符串,故需要手动修改
- ppocrv2_det_client/serving_client_conf.prototxt 中 feed_type 字段 和 shape 字段,修改成如下内容:
+ ppocr_det_v3_client/serving_client_conf.prototxt 中 feed_type 字段 和 shape 字段,修改成如下内容:
```
feed_var {
name: "x"
@@ -243,7 +250,7 @@ cp -rf general_detection_op.cpp Serving/core/general-server/op
```
启动客户端
```
- python3 ocr_cpp_client.py ppocrv2_det_client ppocrv2_rec_client
+ python3 ocr_cpp_client.py ppocr_det_v3_client ppocr_rec_v3_client
```
成功运行后,模型预测的结果会打印在cmd窗口中,结果示例为:
diff --git a/deploy/pdserving/config.yml b/deploy/pdserving/config.yml
index 2aae922dfa12f46d1c0ebd352e8d3a7077065cf8..6e30a626d0cdb0b4e5fe6feb737ea46c2bc59f90 100644
--- a/deploy/pdserving/config.yml
+++ b/deploy/pdserving/config.yml
@@ -34,7 +34,7 @@ op:
client_type: local_predictor
#det模型路径
- model_config: ./ppocr_det_mobile_2.0_serving
+ model_config: ./ppocr_det_v3_serving
#Fetch结果列表,以client_config中fetch_var的alias_name为准
fetch_list: ["save_infer_model/scale_0.tmp_1"]
@@ -60,10 +60,10 @@ op:
client_type: local_predictor
#rec模型路径
- model_config: ./ppocr_rec_mobile_2.0_serving
+ model_config: ./ppocr_rec_v3_serving
#Fetch结果列表,以client_config中fetch_var的alias_name为准
- fetch_list: ["save_infer_model/scale_0.tmp_1"]
+ fetch_list: ["softmax_5.tmp_0"]
#计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
devices: "0"
diff --git a/deploy/pdserving/ocr_reader.py b/deploy/pdserving/ocr_reader.py
index 67099786ea73b66412dac8f965e20201f0ac1fdc..6a2d57b679d69ab11ac6f0fd74c47a342b391545 100644
--- a/deploy/pdserving/ocr_reader.py
+++ b/deploy/pdserving/ocr_reader.py
@@ -392,38 +392,8 @@ class OCRReader(object):
return norm_img_batch[0]
- def postprocess_old(self, outputs, with_score=False):
- rec_res = []
- rec_idx_lod = outputs["ctc_greedy_decoder_0.tmp_0.lod"]
- rec_idx_batch = outputs["ctc_greedy_decoder_0.tmp_0"]
- if with_score:
- predict_lod = outputs["softmax_0.tmp_0.lod"]
- for rno in range(len(rec_idx_lod) - 1):
- beg = rec_idx_lod[rno]
- end = rec_idx_lod[rno + 1]
- if isinstance(rec_idx_batch, list):
- rec_idx_tmp = [x[0] for x in rec_idx_batch[beg:end]]
- else: #nd array
- rec_idx_tmp = rec_idx_batch[beg:end, 0]
- preds_text = self.char_ops.decode(rec_idx_tmp)
- if with_score:
- beg = predict_lod[rno]
- end = predict_lod[rno + 1]
- if isinstance(outputs["softmax_0.tmp_0"], list):
- outputs["softmax_0.tmp_0"] = np.array(outputs[
- "softmax_0.tmp_0"]).astype(np.float32)
- probs = outputs["softmax_0.tmp_0"][beg:end, :]
- ind = np.argmax(probs, axis=1)
- blank = probs.shape[1]
- valid_ind = np.where(ind != (blank - 1))[0]
- score = np.mean(probs[valid_ind, ind[valid_ind]])
- rec_res.append([preds_text, score])
- else:
- rec_res.append([preds_text])
- return rec_res
-
def postprocess(self, outputs, with_score=False):
- preds = outputs["save_infer_model/scale_0.tmp_1"]
+ preds = outputs["softmax_5.tmp_0"]
try:
preds = preds.numpy()
except:
diff --git a/deploy/pdserving/win/ocr_reader.py b/deploy/pdserving/win/ocr_reader.py
index 3f219784fca79715d09ae9353a32d95e2e427cb6..18b9385aa0c7adf7c3e0cd38efd1160655881f0e 100644
--- a/deploy/pdserving/win/ocr_reader.py
+++ b/deploy/pdserving/win/ocr_reader.py
@@ -392,38 +392,8 @@ class OCRReader(object):
return norm_img_batch[0]
- def postprocess_old(self, outputs, with_score=False):
- rec_res = []
- rec_idx_lod = outputs["ctc_greedy_decoder_0.tmp_0.lod"]
- rec_idx_batch = outputs["ctc_greedy_decoder_0.tmp_0"]
- if with_score:
- predict_lod = outputs["softmax_0.tmp_0.lod"]
- for rno in range(len(rec_idx_lod) - 1):
- beg = rec_idx_lod[rno]
- end = rec_idx_lod[rno + 1]
- if isinstance(rec_idx_batch, list):
- rec_idx_tmp = [x[0] for x in rec_idx_batch[beg:end]]
- else: #nd array
- rec_idx_tmp = rec_idx_batch[beg:end, 0]
- preds_text = self.char_ops.decode(rec_idx_tmp)
- if with_score:
- beg = predict_lod[rno]
- end = predict_lod[rno + 1]
- if isinstance(outputs["softmax_0.tmp_0"], list):
- outputs["softmax_0.tmp_0"] = np.array(outputs[
- "softmax_0.tmp_0"]).astype(np.float32)
- probs = outputs["softmax_0.tmp_0"][beg:end, :]
- ind = np.argmax(probs, axis=1)
- blank = probs.shape[1]
- valid_ind = np.where(ind != (blank - 1))[0]
- score = np.mean(probs[valid_ind, ind[valid_ind]])
- rec_res.append([preds_text, score])
- else:
- rec_res.append([preds_text])
- return rec_res
-
def postprocess(self, outputs, with_score=False):
- preds = outputs["save_infer_model/scale_0.tmp_1"]
+ preds = outputs["softmax_5.tmp_0"]
try:
preds = preds.numpy()
except:
diff --git a/doc/doc_ch/algorithm_rec_crnn.md b/doc/doc_ch/algorithm_rec_crnn.md
new file mode 100644
index 0000000000000000000000000000000000000000..70aadd3d684e40ebd1d6e627a26b95b35b544d75
--- /dev/null
+++ b/doc/doc_ch/algorithm_rec_crnn.md
@@ -0,0 +1,140 @@
+# CRNN
+
+- [1. 算法简介](#1)
+- [2. 环境配置](#2)
+- [3. 模型训练、评估、预测](#3)
+ - [3.1 训练](#3-1)
+ - [3.2 评估](#3-2)
+ - [3.3 预测](#3-3)
+- [4. 推理部署](#4)
+ - [4.1 Python推理](#4-1)
+ - [4.2 C++推理](#4-2)
+ - [4.3 Serving服务化部署](#4-3)
+ - [4.4 更多推理部署](#4-4)
+- [5. FAQ](#5)
+
+
+## 1. 算法简介
+
+论文信息:
+> [An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition](https://arxiv.org/abs/1507.05717)
+
+> Baoguang Shi, Xiang Bai, Cong Yao
+
+> IEEE, 2015
+
+参考[DTRB](https://arxiv.org/abs/1904.01906) 文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
+
+|模型|骨干网络|Avg Accuracy|配置文件|下载链接|
+|---|---|---|---|---|
+|CRNN|Resnet34_vd|81.04%|[configs/rec/rec_r34_vd_none_bilstm_ctc.yml](../../configs/rec/rec_r34_vd_none_bilstm_ctc.yml)|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar)|
+|CRNN|MobileNetV3|77.95%|[configs/rec/rec_mv3_none_bilstm_ctc.yml](../../configs/rec/rec_mv3_none_bilstm_ctc.yml)|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar)|
+
+
+
+## 2. 环境配置
+请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。
+
+
+
+## 3. 模型训练、评估、预测
+
+请参考[文本识别训练教程](./recognition.md)。PaddleOCR对代码进行了模块化,训练不同的识别模型只需要**更换配置文件**即可。
+
+- 训练
+
+在完成数据准备后,便可以启动训练,训练命令如下:
+
+```
+#单卡训练(训练周期长,不建议)
+python3 tools/train.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml
+
+#多卡训练,通过--gpus参数指定卡号
+python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c rec_r34_vd_none_bilstm_ctc.yml
+
+```
+
+- 评估
+
+```
+# GPU 评估, Global.pretrained_model 为待测权重
+python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
+```
+
+- 预测:
+
+```
+# 预测使用的配置文件必须与训练一致
+python3 tools/infer_rec.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
+```
+
+
+## 4. 推理部署
+
+
+### 4.1 Python推理
+
+首先将 CRNN 文本识别训练过程中保存的模型,转换成inference model。以基于Resnet34_vd骨干网络,使用MJSynth和SynthText两个英文文本识别合成数据集训练的[模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar) 为例,可以使用如下命令进行转换:
+```shell
+python3 tools/export_model.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml -o Global.pretrained_model=./rec_r34_vd_none_bilstm_ctc_v2.0_train/best_accuracy Global.save_inference_dir=./inference/rec_crnn
+```
+CRNN 文本识别模型推理,可以执行如下命令:
+
+```shell
+python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/rec_crnn/" --rec_image_shape="3, 32, 100" --rec_char_dict_path="./ppocr/utils/ic15_dict.txt"
+```
+
+![](../imgs_words_en/word_336.png)
+
+执行命令后,上面图像的识别结果如下:
+
+```bash
+Predicts of ./doc/imgs_words_en/word_336.png:('super', 0.9999073)
+```
+
+**注意**:由于上述模型是参考[DTRB](https://arxiv.org/abs/1904.01906)文本识别训练和评估流程,与超轻量级中文识别模型训练有两方面不同:
+
+- 训练时采用的图像分辨率不同,训练上述模型采用的图像分辨率是[3,32,100],而中文模型训练时,为了保证长文本的识别效果,训练时采用的图像分辨率是[3, 32, 320]。预测推理程序默认的的形状参数是训练中文采用的图像分辨率,即[3, 32, 320]。因此,这里推理上述英文模型时,需要通过参数rec_image_shape设置识别图像的形状。
+
+- 字符列表,DTRB论文中实验只是针对26个小写英文本母和10个数字进行实验,总共36个字符。所有大小字符都转成了小写字符,不在上面列表的字符都忽略,认为是空格。因此这里没有输入字符字典,而是通过如下命令生成字典.因此在推理时需要设置参数rec_char_dict_path,指定为英文字典"./ppocr/utils/ic15_dict.txt"。
+
+```
+self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
+dict_character = list(self.character_str)
+```
+
+
+
+### 4.2 C++推理
+
+准备好推理模型后,参考[cpp infer](../../deploy/cpp_infer/)教程进行操作即可。
+
+
+### 4.3 Serving服务化部署
+
+准备好推理模型后,参考[pdserving](../../deploy/pdserving/)教程进行Serving服务化部署,包括Python Serving和C++ Serving两种模式。
+
+
+### 4.4 更多推理部署
+
+CRNN模型还支持以下推理部署方式:
+
+- Paddle2ONNX推理:准备好推理模型后,参考[paddle2onnx](../../deploy/paddle2onnx/)教程操作。
+
+
+## 5. FAQ
+
+
+## 引用
+
+```bibtex
+@ARTICLE{7801919,
+ author={Shi, Baoguang and Bai, Xiang and Yao, Cong},
+ journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
+ title={An End-to-End Trainable Neural Network for Image-Based Sequence Recognition and Its Application to Scene Text Recognition},
+ year={2017},
+ volume={39},
+ number={11},
+ pages={2298-2304},
+ doi={10.1109/TPAMI.2016.2646371}}
+```
diff --git a/doc/doc_ch/algorithm_rec_seed.md b/doc/doc_ch/algorithm_rec_seed.md
new file mode 100644
index 0000000000000000000000000000000000000000..94c877ffac3f9716786cdf6618d335511d38325a
--- /dev/null
+++ b/doc/doc_ch/algorithm_rec_seed.md
@@ -0,0 +1,113 @@
+# SEED
+
+- [1. 算法简介](#1)
+- [2. 环境配置](#2)
+- [3. 模型训练、评估、预测](#3)
+ - [3.1 训练](#3-1)
+ - [3.2 评估](#3-2)
+ - [3.3 预测](#3-3)
+- [4. 推理部署](#4)
+ - [4.1 Python推理](#4-1)
+ - [4.2 C++推理](#4-2)
+ - [4.3 Serving服务化部署](#4-3)
+ - [4.4 更多推理部署](#4-4)
+- [5. FAQ](#5)
+
+
+## 1. 算法简介
+
+论文信息:
+> [SEED: Semantics Enhanced Encoder-Decoder Framework for Scene Text Recognition](https://arxiv.org/pdf/2005.10977.pdf)
+
+> Qiao, Zhi and Zhou, Yu and Yang, Dongbao and Zhou, Yucan and Wang, Weiping
+
+> CVPR, 2020
+
+参考[DTRB](https://arxiv.org/abs/1904.01906) 文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
+
+|模型|骨干网络|Avg Accuracy|配置文件|下载链接|
+|---|---|---|---|---|
+|SEED|Aster_Resnet| 85.2% | [configs/rec/rec_resnet_stn_bilstm_att.yml](../../configs/rec/rec_resnet_stn_bilstm_att.yml) | [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_resnet_stn_bilstm_att.tar) |
+
+
+## 2. 环境配置
+请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。
+
+
+
+## 3. 模型训练、评估、预测
+
+请参考[文本识别训练教程](./recognition.md)。PaddleOCR对代码进行了模块化,训练不同的识别模型只需要**更换配置文件**即可。
+
+- 训练
+
+SEED模型需要额外加载FastText训练好的[语言模型](https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.en.300.bin.gz) ,并且安装 fasttext 依赖:
+
+```
+python3 -m pip install fasttext==0.9.1
+```
+
+然后,在完成数据准备后,便可以启动训练,训练命令如下:
+
+```
+#单卡训练(训练周期长,不建议)
+python3 tools/train.py -c configs/rec/rec_resnet_stn_bilstm_att.yml
+
+#多卡训练,通过--gpus参数指定卡号
+python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c rec_resnet_stn_bilstm_att.yml
+
+```
+
+- 评估
+
+```
+# GPU 评估, Global.pretrained_model 为待测权重
+python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_resnet_stn_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
+```
+
+- 预测:
+
+```
+# 预测使用的配置文件必须与训练一致
+python3 tools/infer_rec.py -c configs/rec/rec_resnet_stn_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
+```
+
+
+## 4. 推理部署
+
+
+### 4.1 Python推理
+
+comming soon
+
+
+
+### 4.2 C++推理
+
+comming soon
+
+
+### 4.3 Serving服务化部署
+
+comming soon
+
+
+### 4.4 更多推理部署
+
+comming soon
+
+
+## 5. FAQ
+
+
+## 引用
+
+```bibtex
+@inproceedings{qiao2020seed,
+ title={Seed: Semantics enhanced encoder-decoder framework for scene text recognition},
+ author={Qiao, Zhi and Zhou, Yu and Yang, Dongbao and Zhou, Yucan and Wang, Weiping},
+ booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
+ pages={13528--13537},
+ year={2020}
+}
+```
diff --git a/doc/doc_ch/algorithm_rec_starnet.md b/doc/doc_ch/algorithm_rec_starnet.md
new file mode 100644
index 0000000000000000000000000000000000000000..c9d7706988763a8ac257129ab54915afe11250ac
--- /dev/null
+++ b/doc/doc_ch/algorithm_rec_starnet.md
@@ -0,0 +1,139 @@
+# STAR-Net
+
+- [1. 算法简介](#1)
+- [2. 环境配置](#2)
+- [3. 模型训练、评估、预测](#3)
+ - [3.1 训练](#3-1)
+ - [3.2 评估](#3-2)
+ - [3.3 预测](#3-3)
+- [4. 推理部署](#4)
+ - [4.1 Python推理](#4-1)
+ - [4.2 C++推理](#4-2)
+ - [4.3 Serving服务化部署](#4-3)
+ - [4.4 更多推理部署](#4-4)
+- [5. FAQ](#5)
+
+
+## 1. 算法简介
+
+论文信息:
+> [STAR-Net: a spatial attention residue network for scene text recognition.](http://www.bmva.org/bmvc/2016/papers/paper043/paper043.pdf)
+
+> Wei Liu, Chaofeng Chen, Kwan-Yee K. Wong, Zhizhong Su and Junyu Han.
+
+> BMVC, pages 43.1-43.13, 2016
+
+参考[DTRB](https://arxiv.org/abs/1904.01906) 文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
+
+|模型|骨干网络|Avg Accuracy|配置文件|下载链接|
+|---|---|---|---|---|
+|StarNet|Resnet34_vd|84.44%|[configs/rec/rec_r34_vd_tps_bilstm_ctc.yml](../../configs/rec/rec_r34_vd_tps_bilstm_ctc.yml)|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_ctc_v2.0_train.tar)|
+|StarNet|MobileNetV3|81.42%|[configs/rec/rec_mv3_tps_bilstm_ctc.yml](../../configs/rec/rec_mv3_tps_bilstm_ctc.yml)|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_ctc_v2.0_train.tar)|
+
+
+
+## 2. 环境配置
+请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。
+
+
+
+## 3. 模型训练、评估、预测
+
+请参考[文本识别训练教程](./recognition.md)。PaddleOCR对代码进行了模块化,训练不同的识别模型只需要**更换配置文件**即可。
+
+- 训练
+
+在完成数据准备后,便可以启动训练,训练命令如下:
+
+```
+#单卡训练(训练周期长,不建议)
+python3 tools/train.py -c configs/rec/rec_r34_vd_tps_bilstm_ctc.yml
+
+#多卡训练,通过--gpus参数指定卡号
+python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c rec_r34_vd_tps_bilstm_ctc.yml
+
+```
+
+- 评估
+
+```
+# GPU 评估, Global.pretrained_model 为待测权重
+python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r34_vd_tps_bilstm_ctc.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
+```
+
+- 预测:
+
+```
+# 预测使用的配置文件必须与训练一致
+python3 tools/infer_rec.py -c configs/rec/rec_r34_vd_tps_bilstm_ctc.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
+```
+
+
+## 4. 推理部署
+
+
+### 4.1 Python推理
+
+首先将 STAR-Net 文本识别训练过程中保存的模型,转换成inference model。以基于Resnet34_vd骨干网络,使用MJSynth和SynthText两个英文文本识别合成数据集训练的[模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar) 为例,可以使用如下命令进行转换:
+```shell
+python3 tools/export_model.py -c configs/rec/rec_r34_vd_tps_bilstm_ctc.yml -o Global.pretrained_model=./rec_r34_vd_tps_bilstm_ctc_v2.0_train/best_accuracy Global.save_inference_dir=./inference/rec_starnet
+```
+STAR-Net 文本识别模型推理,可以执行如下命令:
+
+```shell
+python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/rec_starnet/" --rec_image_shape="3, 32, 100" --rec_char_dict_path="./ppocr/utils/ic15_dict.txt"
+```
+
+![](../imgs_words_en/word_336.png)
+
+执行命令后,上面图像的识别结果如下:
+
+```bash
+Predicts of ./doc/imgs_words_en/word_336.png:('super', 0.9999073)
+```
+
+**注意**:由于上述模型是参考[DTRB](https://arxiv.org/abs/1904.01906)文本识别训练和评估流程,与超轻量级中文识别模型训练有两方面不同:
+
+- 训练时采用的图像分辨率不同,训练上述模型采用的图像分辨率是[3,32,100],而中文模型训练时,为了保证长文本的识别效果,训练时采用的图像分辨率是[3, 32, 320]。预测推理程序默认的的形状参数是训练中文采用的图像分辨率,即[3, 32, 320]。因此,这里推理上述英文模型时,需要通过参数rec_image_shape设置识别图像的形状。
+
+- 字符列表,DTRB论文中实验只是针对26个小写英文本母和10个数字进行实验,总共36个字符。所有大小字符都转成了小写字符,不在上面列表的字符都忽略,认为是空格。因此这里没有输入字符字典,而是通过如下命令生成字典.因此在推理时需要设置参数rec_char_dict_path,指定为英文字典"./ppocr/utils/ic15_dict.txt"。
+
+```
+self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
+dict_character = list(self.character_str)
+```
+
+
+
+### 4.2 C++推理
+
+准备好推理模型后,参考[cpp infer](../../deploy/cpp_infer/)教程进行操作即可。
+
+
+### 4.3 Serving服务化部署
+
+准备好推理模型后,参考[pdserving](../../deploy/pdserving/)教程进行Serving服务化部署,包括Python Serving和C++ Serving两种模式。
+
+
+### 4.4 更多推理部署
+
+STAR-Net模型还支持以下推理部署方式:
+
+- Paddle2ONNX推理:准备好推理模型后,参考[paddle2onnx](../../deploy/paddle2onnx/)教程操作。
+
+
+## 5. FAQ
+
+
+## 引用
+
+```bibtex
+@inproceedings{liu2016star,
+ title={STAR-Net: a spatial attention residue network for scene text recognition.},
+ author={Liu, Wei and Chen, Chaofeng and Wong, Kwan-Yee K and Su, Zhizhong and Han, Junyu},
+ booktitle={BMVC},
+ volume={2},
+ pages={7},
+ year={2016}
+}
+```
diff --git a/doc/doc_ch/ppocr_introduction.md b/doc/doc_ch/ppocr_introduction.md
index 7fcad84aa1dda2bcb71cadb69f425f7ec2d5c348..5835325459a2d81931166682cefcde0d077aaaef 100644
--- a/doc/doc_ch/ppocr_introduction.md
+++ b/doc/doc_ch/ppocr_introduction.md
@@ -52,6 +52,27 @@ PP-OCRv3文本检测从网络结构、蒸馏训练策略两个方向做了进一
|4|1 + 2 + LKPAN|4.6M|86.0|156ms|
+PP-OCRv3识别从网络结构、训练策略、数据增强三个方向做了进一步优化:
+- 网络结构上:使用[SVTR](todo:add_link)中的 Transformer block 替换LSTM,提升模型精度和预测速度;
+- 训练策略上:参考 [GTC](https://arxiv.org/pdf/2002.01276.pdf) 策略,使用注意力机制模块指导CTC训练,定位和识别字符,提升不规则文本的识别精度;设计方向分类前序任务,获取更优预训练模型,加速模型收敛过程,提升精度。
+- 数据增强上:使用[RecConAug](todo:add_link)数据增广方法,随机结合图片,提升训练数据的上下文信息丰富度,增强模型鲁棒性。
+
+基于上述策略,PP-OCRv3识别模型相比上一版本,速度加速30%,精度进一步提升4.5%。 具体消融实验:
+
+| id | 策略 | 模型大小 | 精度 | CPU+mkldnn 预测耗时 |
+|-----|-----|--------|----|------------|
+| 01 | PP-OCRv2 | 8M | 69.3% | 26ms |
+| 02 | SVTR_tiny | 19M | 80.1% | - |
+| 03 | LCNet_SVTR_G6 | 8.2M | 76% | - |
+| 04 | LCNet_SVTR_G1 | - | - | - |
+| 05 | PP-OCRv3 | 12M | 71.9% | 19ms |
+| 06 | + GTC | 12M | 75.8% | 19ms |
+| 07 | + RecConAug | 12M | 76.3% | 19ms |
+| 08 | + SSL pretrain | 12M | 76.9% | 19ms |
+| 09 | + UDML | 12M | 78.4% | 19ms |
+| 10 | + unlabeled data | 12M | 79.4% | 19ms |
+
+
## 2. 特性
diff --git a/doc/doc_ch/recognition.md b/doc/doc_ch/recognition.md
index 34a462f7ab704ce7c57fc7b8ef7f0fb3f1fb8931..0b58beb0b008e28d7fecbef8fea84e3d8fcb5964 100644
--- a/doc/doc_ch/recognition.md
+++ b/doc/doc_ch/recognition.md
@@ -105,8 +105,6 @@ train_data/rec/train/word_002.jpg 用科技让复杂的世界更简单
若您本地没有数据集,可以在官网下载 [ICDAR2015](http://rrc.cvc.uab.es/?ch=4&com=downloads) 数据,用于快速验证。也可以参考[DTRB](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here) ,下载 benchmark 所需的lmdb格式数据集。
-如果希望复现SAR的论文指标,需要下载[SynthAdd](https://pan.baidu.com/share/init?surl=uV0LtoNmcxbO-0YA7Ch4dg), 提取码:627x。此外,真实数据集icdar2013, icdar2015, cocotext, IIIT5也作为训练数据的一部分。具体数据细节可以参考论文SAR。
-
如果你使用的是icdar2015的公开数据集,PaddleOCR 提供了一份用于训练 ICDAR2015 数据集的标签文件,通过以下方式下载:
```
@@ -169,12 +167,13 @@ PaddleOCR内置了一部分字典,可以按需使用。
`ppocr/utils/en_dict.txt` 是一个包含96个字符的英文字典
+
目前的多语言模型仍处在demo阶段,会持续优化模型并补充语种,**非常欢迎您为我们提供其他语言的字典和字体**,
如您愿意可将字典文件提交至 [dict](../../ppocr/utils/dict),我们会在Repo中感谢您。
- 自定义字典
-如需自定义dic文件,请在 `configs/rec/rec_icdar15_train.yml` 中添加 `character_dict_path` 字段, 指向您的字典路径。
+如需自定义dic文件,请在 `configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml` 中添加 `character_dict_path` 字段, 指向您的字典路径。
## 1.4 添加空格类别
@@ -195,7 +194,7 @@ PaddleOCR提供了多种数据增强方式,默认配置文件中已经添加
# 2. 开始训练
-PaddleOCR提供了训练脚本、评估脚本和预测脚本,本节将以 CRNN 识别模型为例:
+PaddleOCR提供了训练脚本、评估脚本和预测脚本,本节将以 PP-OCRv3 英文识别模型为例:
## 2.1 启动训练
@@ -204,11 +203,11 @@ PaddleOCR提供了训练脚本、评估脚本和预测脚本,本节将以 CRNN
```
cd PaddleOCR/
-# 下载MobileNetV3的预训练模型
-wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar
+# 下载英文PP-OCRv3的预训练模型
+wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_train.tar
# 解压模型参数
cd pretrain_models
-tar -xf rec_mv3_none_bilstm_ctc_v2.0_train.tar && rm -rf rec_mv3_none_bilstm_ctc_v2.0_train.tar
+tar -xf en_PP-OCRv3_rec_train.tar && rm -rf en_PP-OCRv3_rec_train.tar
```
开始训练:
@@ -220,44 +219,23 @@ tar -xf rec_mv3_none_bilstm_ctc_v2.0_train.tar && rm -rf rec_mv3_none_bilstm_ctc
# 训练icdar15英文数据 训练日志会自动保存为 "{save_model_dir}" 下的train.log
#单卡训练(训练周期长,不建议)
-python3 tools/train.py -c configs/rec/rec_icdar15_train.yml
+python3 tools/train.py -c configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml -o Global.pretrained_model=./pretrain_models/en_PP-OCRv3_rec_train/best_accuracy
#多卡训练,通过--gpus参数指定卡号
-python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_icdar15_train.yml
+python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml -o Global.pretrained_model=./pretrain_models/en_PP-OCRv3_rec_train/best_accuracy
```
-PaddleOCR支持训练和评估交替进行, 可以在 `configs/rec/rec_icdar15_train.yml` 中修改 `eval_batch_step` 设置评估频率,默认每500个iter评估一次。评估过程中默认将最佳acc模型,保存为 `output/rec_CRNN/best_accuracy` 。
+PaddleOCR支持训练和评估交替进行, 可以在 `configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml` 中修改 `eval_batch_step` 设置评估频率,默认每500个iter评估一次。评估过程中默认将最佳acc模型,保存为 `output/en_PP-OCRv3_rec/best_accuracy` 。
如果验证集很大,测试将会比较耗时,建议减少评估次数,或训练完再进行评估。
-**提示:** 可通过 -c 参数选择 `configs/rec/` 路径下的多种模型配置进行训练,PaddleOCR支持的识别算法有:
+**提示:** 可通过 -c 参数选择 `configs/rec/` 路径下的多种模型配置进行训练,PaddleOCR支持的识别算法可以参考[前沿算法列表](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_ch/algorithm_overview.md#12-%E6%96%87%E6%9C%AC%E8%AF%86%E5%88%AB%E7%AE%97%E6%B3%95):
-| 配置文件 | 算法名称 | backbone | trans | seq | pred |
-| :--------: | :-------: | :-------: | :-------: | :-----: | :-----: |
-| [rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml) | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc |
-| [rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml) | CRNN | ResNet34_vd | None | BiLSTM | ctc |
-| rec_icdar15_train.yml | CRNN | Mobilenet_v3 large 0.5 | None | BiLSTM | ctc |
-| rec_mv3_none_bilstm_ctc.yml | CRNN | Mobilenet_v3 large 0.5 | None | BiLSTM | ctc |
-| rec_mv3_none_none_ctc.yml | Rosetta | Mobilenet_v3 large 0.5 | None | None | ctc |
-| rec_r34_vd_none_bilstm_ctc.yml | CRNN | Resnet34_vd | None | BiLSTM | ctc |
-| rec_r34_vd_none_none_ctc.yml | Rosetta | Resnet34_vd | None | None | ctc |
-| rec_mv3_tps_bilstm_att.yml | CRNN | Mobilenet_v3 | TPS | BiLSTM | att |
-| rec_r34_vd_tps_bilstm_att.yml | CRNN | Resnet34_vd | TPS | BiLSTM | att |
-| rec_r50fpn_vd_none_srn.yml | SRN | Resnet50_fpn_vd | None | rnn | srn |
-| rec_mtb_nrtr.yml | NRTR | nrtr_mtb | None | transformer encoder | transformer decoder |
-| rec_r31_sar.yml | SAR | ResNet31 | None | LSTM encoder | LSTM decoder |
-| rec_resnet_stn_bilstm_att.yml | SEED | Aster_Resnet | STN | BiLSTM | att |
+训练中文数据,推荐使用[ch_PP-OCRv3_rec_distillation.yml](../../configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml),如您希望尝试其他算法在中文数据集上的效果,请参考下列说明修改配置文件:
-*其中SEED模型需要额外加载FastText训练好的[语言模型](https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.en.300.bin.gz) ,并且安装 fasttext 依赖:
-```
-python3.7 -m pip install fasttext==0.9.1
-```
-
-训练中文数据,推荐使用[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml),如您希望尝试其他算法在中文数据集上的效果,请参考下列说明修改配置文件:
-
-以 `rec_chinese_lite_train_v2.0.yml` 为例:
+以 `ch_PP-OCRv3_rec_distillation.yml` 为例:
```
Global:
...
@@ -290,7 +268,7 @@ Train:
...
- RecResizeImg:
# 修改 image_shape 以适应长文本
- image_shape: [3, 32, 320]
+ image_shape: [3, 48, 320]
...
loader:
...
@@ -310,7 +288,7 @@ Eval:
...
- RecResizeImg:
# 修改 image_shape 以适应长文本
- image_shape: [3, 32, 320]
+ image_shape: [3, 48, 320]
...
loader:
# 单卡验证的batch_size
@@ -325,7 +303,7 @@ Eval:
如果训练程序中断,如果希望加载训练中断的模型从而恢复训练,可以通过指定Global.checkpoints指定要加载的模型路径:
```shell
-python3 tools/train.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints=./your/trained/model
+python3 tools/train.py -c configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml -o Global.checkpoints=./your/trained/model
```
**注意**:`Global.checkpoints`的优先级高于`Global.pretrained_model`的优先级,即同时指定两个参数时,优先加载`Global.checkpoints`指定的模型,如果`Global.checkpoints`指定的模型路径有误,会加载`Global.pretrained_model`指定的模型。
@@ -383,8 +361,8 @@ args1: args1
如果您想进一步加快训练速度,可以使用[自动混合精度训练](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/01_paddle2.0_introduction/basic_concept/amp_cn.html), 以单机单卡为例,命令如下:
```shell
-python3 tools/train.py -c configs/rec/rec_icdar15_train.yml \
- -o Global.pretrained_model=./pretrain_models/rec_mv3_none_bilstm_ctc_v2.0_train \
+python3 tools/train.py -c configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml \
+ -o Global.pretrained_model=./pretrain_models/en_PP-OCRv3_rec_train/best_accuracy \
Global.use_amp=True Global.scale_loss=1024.0 Global.use_dynamic_loss_scaling=True
```
@@ -394,8 +372,8 @@ python3 tools/train.py -c configs/rec/rec_icdar15_train.yml \
多机多卡训练时,通过 `--ips` 参数设置使用的机器IP地址,通过 `--gpus` 参数设置使用的GPU ID:
```bash
-python3 -m paddle.distributed.launch --ips="xx.xx.xx.xx,xx.xx.xx.xx" --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_icdar15_train.yml \
- -o Global.pretrained_model=./pretrain_models/rec_mv3_none_bilstm_ctc_v2.0_train
+python3 -m paddle.distributed.launch --ips="xx.xx.xx.xx,xx.xx.xx.xx" --gpus '0,1,2,3' tools/train.py -c configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml \
+ -o Global.pretrained_model=./pretrain_models/en_PP-OCRv3_rec_train/best_accuracy
```
**注意:** 采用多机多卡训练时,需要替换上面命令中的ips值为您机器的地址,机器之间需要能够相互ping通。另外,训练时需要在多个机器上分别启动命令。查看机器ip地址的命令为`ifconfig`。
@@ -485,11 +463,12 @@ DCU设备上运行需要设置环境变量 `export HIP_VISIBLE_DEVICES=0,1,2,3`
## 3.1 指标评估
-训练中模型参数默认保存在`Global.save_model_dir`目录下。在评估指标时,需要设置`Global.checkpoints`指向保存的参数文件。评估数据集可以通过 `configs/rec/rec_icdar15_train.yml` 修改Eval中的 `label_file_path` 设置。
+训练中模型参数默认保存在`Global.save_model_dir`目录下。在评估指标时,需要设置`Global.checkpoints`指向保存的参数文件。评估数据集可以通过 `configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml` 修改Eval中的 `label_file_path` 设置。
+
```
# GPU 评估, Global.checkpoints 为待测权重
-python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy
+python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml -o Global.checkpoints={path/to/weights}/best_accuracy
```
@@ -519,7 +498,7 @@ output/rec/
```
# 预测英文结果
-python3 tools/infer_rec.py -c configs/rec/rec_icdar15_train.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/en/word_1.png
+python3 tools/infer_rec.py -c configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
```
预测图片:
@@ -538,7 +517,7 @@ infer_img: doc/imgs_words/en/word_1.png
```
# 预测中文结果
-python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/ch/word_1.jpg
+python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/ch/word_1.jpg
```
预测图片:
@@ -569,15 +548,15 @@ inference 模型(`paddle.jit.save`保存的模型)
# Global.pretrained_model 参数设置待转换的训练模型地址,不用添加文件后缀 .pdmodel,.pdopt或.pdparams。
# Global.save_inference_dir参数设置转换的模型将保存的地址。
-python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_rec_train/best_accuracy Global.save_inference_dir=./inference/rec_crnn/
+python3 tools/export_model.py -c configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml -o Global.pretrained_model=./pretrain_models/en_PP-OCRv3_rec_train/best_accuracy Global.save_inference_dir=./inference/en_PP-OCRv3_rec/
```
-**注意:**如果您是在自己的数据集上训练的模型,并且调整了中文字符的字典文件,请注意修改配置文件中的`character_dict_path`是否是所需要的字典文件。
+**注意:**如果您是在自己的数据集上训练的模型,并且调整了中文字符的字典文件,请注意修改配置文件中的`character_dict_path`为自定义字典文件。
转换成功后,在目录下有三个文件:
```
-/inference/rec_crnn/
+inference/en_PP-OCRv3_rec/
├── inference.pdiparams # 识别inference模型的参数文件
├── inference.pdiparams.info # 识别inference模型的参数信息,可忽略
└── inference.pdmodel # 识别inference模型的program文件
@@ -588,7 +567,7 @@ python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_trai
如果训练时修改了文本的字典,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径
```
- python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_dict_path="your text dict path"
+ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 48, 320" --rec_char_dict_path="your text dict path"
```
diff --git a/doc/doc_en/algorithm_rec_aster_en.md b/doc/doc_en/algorithm_rec_aster_en.md
new file mode 100644
index 0000000000000000000000000000000000000000..1540681a19f94160e221c37173510395d0fd407f
--- /dev/null
+++ b/doc/doc_en/algorithm_rec_aster_en.md
@@ -0,0 +1,122 @@
+# STAR-Net
+
+- [1. Introduction](#1)
+- [2. Environment](#2)
+- [3. Model Training / Evaluation / Prediction](#3)
+ - [3.1 Training](#3-1)
+ - [3.2 Evaluation](#3-2)
+ - [3.3 Prediction](#3-3)
+- [4. Inference and Deployment](#4)
+ - [4.1 Python Inference](#4-1)
+ - [4.2 C++ Inference](#4-2)
+ - [4.3 Serving](#4-3)
+ - [4.4 More](#4-4)
+- [5. FAQ](#5)
+
+
+## 1. Introduction
+
+Paper:
+> [STAR-Net: a spatial attention residue network for scene text recognition.](http://www.bmva.org/bmvc/2016/papers/paper043/paper043.pdf)
+
+> Wei Liu, Chaofeng Chen, Kwan-Yee K. Wong, Zhizhong Su and Junyu Han.
+
+> BMVC, pages 43.1-43.13, 2016
+
+Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets, the algorithm reproduction effect is as follows:
+
+|Model|Backbone|ACC|config|Download link|
+| --- | --- | --- | --- | --- |
+|---|---|---|---|---|
+|StarNet|Resnet34_vd|84.44%|[configs/rec/rec_r34_vd_tps_bilstm_ctc.yml](../../configs/rec/rec_r34_vd_tps_bilstm_ctc.yml)|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_ctc_v2.0_train.tar)|
+|StarNet|MobileNetV3|81.42%|[configs/rec/rec_mv3_tps_bilstm_ctc.yml](../../configs/rec/rec_mv3_tps_bilstm_ctc.yml)|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_ctc_v2.0_train.tar)|
+
+
+## 2. Environment
+Please refer to ["Environment Preparation"](./environment.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone.md) to clone the project code.
+
+
+
+## 3. Model Training / Evaluation / Prediction
+
+Please refer to [Text Recognition Tutorial](./recognition.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
+
+Training:
+
+Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
+
+```
+#Single GPU training (long training period, not recommended)
+python3 tools/train.py -c configs/rec/rec_r34_vd_tps_bilstm_ctc.yml
+
+#Multi GPU training, specify the gpu number through the --gpus parameter
+python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c rec_r34_vd_tps_bilstm_ctc.yml
+```
+
+Evaluation:
+
+```
+# GPU evaluation
+python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r34_vd_tps_bilstm_ctc.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
+```
+
+Prediction:
+
+```
+# The configuration file used for prediction must match the training
+python3 tools/infer_rec.py -c configs/rec/rec_r34_vd_tps_bilstm_ctc.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
+```
+
+
+## 4. Inference and Deployment
+
+
+### 4.1 Python Inference
+First, the model saved during the STAR-Net text recognition training process is converted into an inference model. ( [Model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_r31_STAR-Net_train.tar) ), you can use the following command to convert:
+
+```
+python3 tools/export_model.py -c configs/rec/rec_r34_vd_tps_bilstm_ctc.yml -o Global.pretrained_model=./rec_r34_vd_tps_bilstm_ctc_v2.0_train/best_accuracy Global.save_inference_dir=./inference/rec_starnet
+```
+
+For STAR-Net text recognition model inference, the following commands can be executed:
+
+```
+python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/rec_starnet/" --rec_image_shape="3, 32, 100" --rec_char_dict_path="./ppocr/utils/ic15_dict.txt"
+```
+
+
+### 4.2 C++ Inference
+
+With the inference model prepared, refer to the [cpp infer](../../deploy/cpp_infer/) tutorial for C++ inference.
+
+
+
+### 4.3 Serving
+
+With the inference model prepared, refer to the [pdserving](../../deploy/pdserving/) tutorial for service deployment by Paddle Serving.
+
+
+
+### 4.4 More
+
+More deployment schemes supported for STAR-Net:
+
+- Paddle2ONNX: with the inference model prepared, please refer to the [paddle2onnx](../../deploy/paddle2onnx/) tutorial.
+
+
+
+## 5. FAQ
+
+
+## Citation
+
+```bibtex
+@inproceedings{liu2016star,
+ title={STAR-Net: a spatial attention residue network for scene text recognition.},
+ author={Liu, Wei and Chen, Chaofeng and Wong, Kwan-Yee K and Su, Zhizhong and Han, Junyu},
+ booktitle={BMVC},
+ volume={2},
+ pages={7},
+ year={2016}
+}
+```
diff --git a/doc/doc_en/algorithm_rec_crnn_en.md b/doc/doc_en/algorithm_rec_crnn_en.md
new file mode 100644
index 0000000000000000000000000000000000000000..571569ee445d756ca7bdfeea6d5f960187a5a666
--- /dev/null
+++ b/doc/doc_en/algorithm_rec_crnn_en.md
@@ -0,0 +1,123 @@
+# CRNN
+
+- [1. Introduction](#1)
+- [2. Environment](#2)
+- [3. Model Training / Evaluation / Prediction](#3)
+ - [3.1 Training](#3-1)
+ - [3.2 Evaluation](#3-2)
+ - [3.3 Prediction](#3-3)
+- [4. Inference and Deployment](#4)
+ - [4.1 Python Inference](#4-1)
+ - [4.2 C++ Inference](#4-2)
+ - [4.3 Serving](#4-3)
+ - [4.4 More](#4-4)
+- [5. FAQ](#5)
+
+
+## 1. Introduction
+
+Paper:
+> [An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition](https://arxiv.org/abs/1507.05717)
+
+> Baoguang Shi, Xiang Bai, Cong Yao
+
+> IEEE, 2015
+
+Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets, the algorithm reproduction effect is as follows:
+
+|Model|Backbone|ACC|config|Download link|
+| --- | --- | --- | --- | --- |
+|---|---|---|---|---|
+|CRNN|Resnet34_vd|81.04%|[configs/rec/rec_r34_vd_none_bilstm_ctc.yml](../../configs/rec/rec_r34_vd_none_bilstm_ctc.yml)|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar)|
+|CRNN|MobileNetV3|77.95%|[configs/rec/rec_mv3_none_bilstm_ctc.yml](../../configs/rec/rec_mv3_none_bilstm_ctc.yml)|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar)|
+
+
+## 2. Environment
+Please refer to ["Environment Preparation"](./environment.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone.md) to clone the project code.
+
+
+
+## 3. Model Training / Evaluation / Prediction
+
+Please refer to [Text Recognition Tutorial](./recognition.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
+
+Training:
+
+Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
+
+```
+#Single GPU training (long training period, not recommended)
+python3 tools/train.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml
+
+#Multi GPU training, specify the gpu number through the --gpus parameter
+python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml
+```
+
+Evaluation:
+
+```
+# GPU evaluation
+python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
+```
+
+Prediction:
+
+```
+# The configuration file used for prediction must match the training
+python3 tools/infer_rec.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
+```
+
+
+## 4. Inference and Deployment
+
+
+### 4.1 Python Inference
+First, the model saved during the CRNN text recognition training process is converted into an inference model. ( [Model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_r31_CRNN_train.tar) ), you can use the following command to convert:
+
+```
+python3 tools/export_model.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml -o Global.pretrained_model=./rec_r34_vd_none_bilstm_ctc_v2.0_train/best_accuracy Global.save_inference_dir=./inference/rec_crnn
+```
+
+For CRNN text recognition model inference, the following commands can be executed:
+
+```
+python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/rec_crnn/" --rec_image_shape="3, 32, 100" --rec_char_dict_path="./ppocr/utils/ic15_dict.txt"
+```
+
+
+### 4.2 C++ Inference
+
+With the inference model prepared, refer to the [cpp infer](../../deploy/cpp_infer/) tutorial for C++ inference.
+
+
+
+### 4.3 Serving
+
+With the inference model prepared, refer to the [pdserving](../../deploy/pdserving/) tutorial for service deployment by Paddle Serving.
+
+
+
+### 4.4 More
+
+More deployment schemes supported for CRNN:
+
+- Paddle2ONNX: with the inference model prepared, please refer to the [paddle2onnx](../../deploy/paddle2onnx/) tutorial.
+
+
+
+## 5. FAQ
+
+
+## Citation
+
+```bibtex
+@ARTICLE{7801919,
+ author={Shi, Baoguang and Bai, Xiang and Yao, Cong},
+ journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
+ title={An End-to-End Trainable Neural Network for Image-Based Sequence Recognition and Its Application to Scene Text Recognition},
+ year={2017},
+ volume={39},
+ number={11},
+ pages={2298-2304},
+ doi={10.1109/TPAMI.2016.2646371}}
+```
diff --git a/doc/doc_en/algorithm_rec_seed_en.md b/doc/doc_en/algorithm_rec_seed_en.md
new file mode 100644
index 0000000000000000000000000000000000000000..21679f42fd6302228804db49d731f9b69ec692b2
--- /dev/null
+++ b/doc/doc_en/algorithm_rec_seed_en.md
@@ -0,0 +1,111 @@
+# SEED
+
+- [1. Introduction](#1)
+- [2. Environment](#2)
+- [3. Model Training / Evaluation / Prediction](#3)
+ - [3.1 Training](#3-1)
+ - [3.2 Evaluation](#3-2)
+ - [3.3 Prediction](#3-3)
+- [4. Inference and Deployment](#4)
+ - [4.1 Python Inference](#4-1)
+ - [4.2 C++ Inference](#4-2)
+ - [4.3 Serving](#4-3)
+ - [4.4 More](#4-4)
+- [5. FAQ](#5)
+
+
+## 1. Introduction
+
+Paper:
+> [SEED: Semantics Enhanced Encoder-Decoder Framework for Scene Text Recognition](https://arxiv.org/pdf/2005.10977.pdf)
+
+> Qiao, Zhi and Zhou, Yu and Yang, Dongbao and Zhou, Yucan and Wang, Weiping
+
+> CVPR, 2020
+
+Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets, the algorithm reproduction effect is as follows:
+
+|Model|Backbone|ACC|config|Download link|
+| --- | --- | --- | --- | --- |
+|SEED|Aster_Resnet| 85.2% | [configs/rec/rec_resnet_stn_bilstm_att.yml](../../configs/rec/rec_resnet_stn_bilstm_att.yml) | [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_resnet_stn_bilstm_att.tar) |
+
+
+## 2. Environment
+Please refer to ["Environment Preparation"](./environment.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone.md) to clone the project code.
+
+
+
+## 3. Model Training / Evaluation / Prediction
+
+Please refer to [Text Recognition Tutorial](./recognition.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
+
+Training:
+
+The SEED model needs to additionally load the [language model](https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.en.300.bin.gz) trained by FastText, and install the fasttext dependencies:
+
+```
+python3 -m pip install fasttext==0.9.1
+```
+
+Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
+
+```
+#Single GPU training (long training period, not recommended)
+python3 tools/train.py -c configs/rec/rec_resnet_stn_bilstm_att.yml
+
+#Multi GPU training, specify the gpu number through the --gpus parameter
+python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c rec_resnet_stn_bilstm_att.yml
+```
+
+Evaluation:
+
+```
+# GPU evaluation
+python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_resnet_stn_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
+```
+
+Prediction:
+
+```
+# The configuration file used for prediction must match the training
+python3 tools/infer_rec.py -c configs/rec/rec_resnet_stn_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
+```
+
+
+## 4. Inference and Deployment
+
+
+### 4.1 Python Inference
+
+Not support
+
+
+### 4.2 C++ Inference
+
+Not support
+
+
+### 4.3 Serving
+
+Not support
+
+
+### 4.4 More
+
+Not support
+
+
+## 5. FAQ
+
+
+## Citation
+
+```bibtex
+@inproceedings{qiao2020seed,
+ title={Seed: Semantics enhanced encoder-decoder framework for scene text recognition},
+ author={Qiao, Zhi and Zhou, Yu and Yang, Dongbao and Zhou, Yucan and Wang, Weiping},
+ booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
+ pages={13528--13537},
+ year={2020}
+}
+```
diff --git a/doc/doc_en/recognition_en.md b/doc/doc_en/recognition_en.md
index a6b255f9501a0c2d34c31162385bcf03ff578aa3..68ffc39121eee4dde4eecdd577200effdb3bdb05 100644
--- a/doc/doc_en/recognition_en.md
+++ b/doc/doc_en/recognition_en.md
@@ -28,7 +28,34 @@
To prepare datasets, refer to [ocr_datasets](./dataset/ocr_datasets.md) .
-If you want to reproduce the paper SAR, you need to download extra dataset [SynthAdd](https://pan.baidu.com/share/init?surl=uV0LtoNmcxbO-0YA7Ch4dg), extraction code: 627x. Besides, icdar2013, icdar2015, cocotext, IIIT5k datasets are also used to train. For specific details, please refer to the paper SAR.
+PaddleOCR provides label files for training the icdar2015 dataset, which can be downloaded in the following ways:
+
+```
+# Training set label
+wget -P ./train_data/ic15_data https://paddleocr.bj.bcebos.com/dataset/rec_gt_train.txt
+# Test Set Label
+wget -P ./train_data/ic15_data https://paddleocr.bj.bcebos.com/dataset/rec_gt_test.txt
+```
+
+PaddleOCR also provides a data format conversion script, which can convert ICDAR official website label to a data format
+supported by PaddleOCR. The data conversion tool is in `ppocr/utils/gen_label.py`, here is the training set as an example:
+
+```
+# convert the official gt to rec_gt_label.txt
+python gen_label.py --mode="rec" --input_path="{path/of/origin/label}" --output_label="rec_gt_label.txt"
+```
+
+The data format is as follows, (a) is the original picture, (b) is the Ground Truth text file corresponding to each picture:
+
+![](../datasets/icdar_rec.png)
+
+
+- Multilingual dataset
+
+The multi-language model training method is the same as the Chinese model. The training data set is 100w synthetic data. A small amount of fonts and test data can be downloaded using the following two methods.
+* [Baidu Netdisk](https://pan.baidu.com/s/1bS_u207Rm7YbY33wOECKDA) ,Extraction code:frgi.
+* [Google drive](https://drive.google.com/file/d/18cSWX7wXSy4G0tbKJ0d9PuIaiwRLHpjA/view)
+
### 1.2 Dictionary
@@ -101,11 +128,11 @@ First download the pretrain model, you can download the trained model to finetun
```
cd PaddleOCR/
-# Download the pre-trained model of MobileNetV3
-wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar
+# Download the pre-trained model of en_PP-OCRv3
+wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_train.tar
# Decompress model parameters
cd pretrain_models
-tar -xf rec_mv3_none_bilstm_ctc_v2.0_train.tar && rm -rf rec_mv3_none_bilstm_ctc_v2.0_train.tar
+tar -xf en_PP-OCRv3_rec_train.tar && rm -rf en_PP-OCRv3_rec_train.tar
```
Start training:
@@ -115,9 +142,10 @@ Start training:
# Training icdar15 English data and The training log will be automatically saved as train.log under "{save_model_dir}"
#specify the single card training(Long training time, not recommended)
-python3 tools/train.py -c configs/rec/rec_icdar15_train.yml
+python3 tools/train.py -c configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml -o Global.pretrained_model=en_PP-OCRv3_rec_train/best_accuracy
+
#specify the card number through --gpus
-python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_icdar15_train.yml
+python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml -o Global.pretrained_model=en_PP-OCRv3_rec_train/best_accuracy
```
@@ -125,31 +153,13 @@ PaddleOCR supports alternating training and evaluation. You can modify `eval_bat
If the evaluation set is large, the test will be time-consuming. It is recommended to reduce the number of evaluations, or evaluate after training.
-* Tip: You can use the `-c` parameter to select multiple model configurations under the `configs/rec/` path for training. The recognition algorithms supported by PaddleOCR are:
-
-
-| Configuration file | Algorithm | backbone | trans | seq | pred |
-| :--------: | :-------: | :-------: | :-------: | :-----: | :-----: |
-| [rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml) | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc |
-| [rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml) | CRNN | ResNet34_vd | None | BiLSTM | ctc |
-| rec_chinese_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc |
-| rec_chinese_common_train.yml | CRNN | ResNet34_vd | None | BiLSTM | ctc |
-| rec_icdar15_train.yml | CRNN | Mobilenet_v3 large 0.5 | None | BiLSTM | ctc |
-| rec_mv3_none_bilstm_ctc.yml | CRNN | Mobilenet_v3 large 0.5 | None | BiLSTM | ctc |
-| rec_mv3_none_none_ctc.yml | Rosetta | Mobilenet_v3 large 0.5 | None | None | ctc |
-| rec_r34_vd_none_bilstm_ctc.yml | CRNN | Resnet34_vd | None | BiLSTM | ctc |
-| rec_r34_vd_none_none_ctc.yml | Rosetta | Resnet34_vd | None | None | ctc |
-| rec_mv3_tps_bilstm_att.yml | CRNN | Mobilenet_v3 | TPS | BiLSTM | att |
-| rec_r34_vd_tps_bilstm_att.yml | CRNN | Resnet34_vd | TPS | BiLSTM | att |
-| rec_r50fpn_vd_none_srn.yml | SRN | Resnet50_fpn_vd | None | rnn | srn |
-| rec_mtb_nrtr.yml | NRTR | nrtr_mtb | None | transformer encoder | transformer decoder |
-| rec_r31_sar.yml | SAR | ResNet31 | None | LSTM encoder | LSTM decoder |
+* Tip: You can use the `-c` parameter to select multiple model configurations under the `configs/rec/` path for training. The recognition algorithms supported at [rec_algorithm](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_en/algorithm_overview.md):
For training Chinese data, it is recommended to use
-[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml). If you want to try the result of other algorithms on the Chinese data set, please refer to the following instructions to modify the configuration file:
-co
-Take `rec_chinese_lite_train_v2.0.yml` as an example:
+[ch_PP-OCRv3_rec_distillation.yml](../../configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml). If you want to try the result of other algorithms on the Chinese data set, please refer to the following instructions to modify the configuration file:
+
+Take `ch_PP-OCRv3_rec_distillation.yml` as an example:
```
Global:
...
@@ -183,7 +193,7 @@ Train:
...
- RecResizeImg:
# Modify image_shape to fit long text
- image_shape: [3, 32, 320]
+ image_shape: [3, 48, 320]
...
loader:
...
@@ -203,7 +213,7 @@ Eval:
...
- RecResizeImg:
# Modify image_shape to fit long text
- image_shape: [3, 32, 320]
+ image_shape: [3, 48, 320]
...
loader:
# Eval batch_size for Single card
@@ -380,11 +390,12 @@ Running on a DCU device requires setting the environment variable `export HIP_VI
### 3.1 Evaluation
-The model parameters during training are saved in the `Global.save_model_dir` directory by default. When evaluating indicators, you need to set `Global.checkpoints` to point to the saved parameter file. The evaluation dataset can be set by modifying the `Eval.dataset.label_file_list` field in the `configs/rec/rec_icdar15_train.yml` file.
+The model parameters during training are saved in the `Global.save_model_dir` directory by default. When evaluating indicators, you need to set `Global.checkpoints` to point to the saved parameter file. The evaluation dataset can be set by modifying the `Eval.dataset.label_file_list` field in the `configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml` file.
+
```
# GPU evaluation, Global.checkpoints is the weight to be tested
-python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy
+python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml -o Global.checkpoints={path/to/weights}/best_accuracy
```
@@ -417,7 +428,7 @@ Among them, best_accuracy.* is the best model on the evaluation set; iter_epoch_
```
# Predict English results
-python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/en/word_1.jpg
+python3 tools/infer_rec.py -c configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
```
@@ -436,7 +447,7 @@ The configuration file used for prediction must be consistent with the training.
```
# Predict Chinese results
-python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/ch/word_1.jpg
+python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/ch/word_1.jpg
```
Input image:
@@ -467,7 +478,7 @@ The recognition model is converted to the inference model in the same way as the
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
# Global.save_inference_dir Set the address where the converted model will be saved.
-python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_rec_train/best_accuracy Global.save_inference_dir=./inference/rec_crnn/
+python3 tools/export_model.py -c configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml -o Global.pretrained_model=en_PP-OCRv3_rec_train/best_accuracy Global.save_inference_dir=./inference/en_PP-OCRv3_rec/
```
If you have a model trained on your own dataset with a different dictionary file, please make sure that you modify the `character_dict_path` in the configuration file to your dictionary file path.
@@ -475,7 +486,8 @@ If you have a model trained on your own dataset with a different dictionary file
After the conversion is successful, there are three files in the model save directory:
```
-inference/rec_crnn/
+
+inference/en_PP-OCRv3_rec/
├── inference.pdiparams # The parameter file of recognition inference model
├── inference.pdiparams.info # The parameter information of recognition inference model, which can be ignored
└── inference.pdmodel # The program file of recognition model