Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
weixin_41840029
PaddleOCR
提交
dda748f9
P
PaddleOCR
项目概览
weixin_41840029
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
dda748f9
编写于
5月 31, 2022
作者:
Z
zhoujun
提交者:
GitHub
5月 31, 2022
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #6437 from WenmuZhou/rec_aug1
add bda
上级
ff39b082
32bcea9c
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
70 addition
and
100 deletion
+70
-100
configs/cls/ch_PP-OCRv3/ch_PP-OCRv3_rotnet.yml
configs/cls/ch_PP-OCRv3/ch_PP-OCRv3_rotnet.yml
+1
-2
configs/cls/cls_mv3.yml
configs/cls/cls_mv3.yml
+1
-2
doc/doc_ch/FAQ.md
doc/doc_ch/FAQ.md
+1
-1
ppocr/data/imaug/__init__.py
ppocr/data/imaug/__init__.py
+1
-1
ppocr/data/imaug/rec_img_aug.py
ppocr/data/imaug/rec_img_aug.py
+66
-94
未找到文件。
configs/cls/ch_PP-OCRv3/ch_PP-OCRv3_rotnet.yml
浏览文件 @
dda748f9
...
...
@@ -63,8 +63,7 @@ Train:
-
DecodeImage
:
img_mode
:
BGR
channel_first
:
false
-
RecAug
:
use_tia
:
False
-
BaseDataAugmentation
:
-
RandAugment
:
-
SSLRotateResize
:
image_shape
:
[
3
,
48
,
320
]
...
...
configs/cls/cls_mv3.yml
浏览文件 @
dda748f9
...
...
@@ -60,8 +60,7 @@ Train:
img_mode
:
BGR
channel_first
:
False
-
ClsLabelEncode
:
# Class handling label
-
RecAug
:
use_tia
:
False
-
BaseDataAugmentation
:
-
RandAugment
:
-
ClsResizeImg
:
image_shape
:
[
3
,
48
,
192
]
...
...
doc/doc_ch/FAQ.md
浏览文件 @
dda748f9
...
...
@@ -682,7 +682,7 @@ lr:
#### Q: 关于dygraph分支中,文本识别模型训练,要使用数据增强应该如何设置?
**A**
:可以参考
[
配置文件
](
../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml
)
在Train
[
'dataset'
][
'transforms'
]
添加RecAug字段,使数据增强生效。可以通过添加对aug_prob设置,表示每种数据增强采用的概率。aug_prob默认是0.4
.由于tia数据增强特殊性,默认不采用,可以通过添加use_tia设置,使tia数据增强生效
。详细设置可以参考
[
ISSUE 1744
](
https://github.com/PaddlePaddle/PaddleOCR/issues/1744
)
。
**A**
:可以参考
[
配置文件
](
../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml
)
在Train
[
'dataset'
][
'transforms'
]
添加RecAug字段,使数据增强生效。可以通过添加对aug_prob设置,表示每种数据增强采用的概率。aug_prob默认是0.4。详细设置可以参考
[
ISSUE 1744
](
https://github.com/PaddlePaddle/PaddleOCR/issues/1744
)
。
#### Q: 训练过程中,训练程序意外退出/挂起,应该如何解决?
...
...
ppocr/data/imaug/__init__.py
浏览文件 @
dda748f9
...
...
@@ -22,7 +22,7 @@ from .make_shrink_map import MakeShrinkMap
from
.random_crop_data
import
EastRandomCropData
,
RandomCropImgMask
from
.make_pse_gt
import
MakePseGt
from
.rec_img_aug
import
RecAug
,
RecConAug
,
RecResizeImg
,
ClsResizeImg
,
\
from
.rec_img_aug
import
BaseDataAugmentation
,
RecAug
,
RecConAug
,
RecResizeImg
,
ClsResizeImg
,
\
SRNRecResizeImg
,
NRTRRecResizeImg
,
SARRecResizeImg
,
PRENResizeImg
from
.ssl_img_aug
import
SSLRotateResize
from
.randaugment
import
RandAugment
...
...
ppocr/data/imaug/rec_img_aug.py
浏览文件 @
dda748f9
...
...
@@ -22,13 +22,74 @@ from .text_image_aug import tia_perspective, tia_stretch, tia_distort
class
RecAug
(
object
):
def
__init__
(
self
,
use_tia
=
True
,
aug_prob
=
0.4
,
**
kwargs
):
self
.
use_tia
=
use_tia
self
.
aug_prob
=
aug_prob
def
__init__
(
self
,
tia_prob
=
0.4
,
crop_prob
=
0.4
,
reverse_prob
=
0.4
,
noise_prob
=
0.4
,
jitter_prob
=
0.4
,
blur_prob
=
0.4
,
hsv_aug_prob
=
0.4
,
**
kwargs
):
self
.
tia_prob
=
tia_prob
self
.
bda
=
BaseDataAugmentation
(
crop_prob
,
reverse_prob
,
noise_prob
,
jitter_prob
,
blur_prob
,
hsv_aug_prob
)
def
__call__
(
self
,
data
):
img
=
data
[
'image'
]
img
=
warp
(
img
,
10
,
self
.
use_tia
,
self
.
aug_prob
)
h
,
w
,
_
=
img
.
shape
# tia
if
random
.
random
()
<=
self
.
tia_prob
:
if
h
>=
20
and
w
>=
20
:
img
=
tia_distort
(
img
,
random
.
randint
(
3
,
6
))
img
=
tia_stretch
(
img
,
random
.
randint
(
3
,
6
))
img
=
tia_perspective
(
img
)
# bda
data
[
'image'
]
=
img
data
=
self
.
bda
(
data
)
return
data
class
BaseDataAugmentation
(
object
):
def
__init__
(
self
,
crop_prob
=
0.4
,
reverse_prob
=
0.4
,
noise_prob
=
0.4
,
jitter_prob
=
0.4
,
blur_prob
=
0.4
,
hsv_aug_prob
=
0.4
,
**
kwargs
):
self
.
crop_prob
=
crop_prob
self
.
reverse_prob
=
reverse_prob
self
.
noise_prob
=
noise_prob
self
.
jitter_prob
=
jitter_prob
self
.
blur_prob
=
blur_prob
self
.
hsv_aug_prob
=
hsv_aug_prob
def
__call__
(
self
,
data
):
img
=
data
[
'image'
]
h
,
w
,
_
=
img
.
shape
if
random
.
random
()
<=
self
.
crop_prob
and
h
>=
20
and
w
>=
20
:
img
=
get_crop
(
img
)
if
random
.
random
()
<=
self
.
blur_prob
:
img
=
blur
(
img
)
if
random
.
random
()
<=
self
.
hsv_aug_prob
:
img
=
hsv_aug
(
img
)
if
random
.
random
()
<=
self
.
jitter_prob
:
img
=
jitter
(
img
)
if
random
.
random
()
<=
self
.
noise_prob
:
img
=
add_gasuss_noise
(
img
)
if
random
.
random
()
<=
self
.
reverse_prob
:
img
=
255
-
img
data
[
'image'
]
=
img
return
data
...
...
@@ -359,7 +420,7 @@ def flag():
return
1
if
random
.
random
()
>
0.5000001
else
-
1
def
cvtColor
(
img
):
def
hsv_aug
(
img
):
"""
cvtColor
"""
...
...
@@ -427,50 +488,6 @@ def get_crop(image):
return
crop_img
class
Config
:
"""
Config
"""
def
__init__
(
self
,
use_tia
):
self
.
anglex
=
random
.
random
()
*
30
self
.
angley
=
random
.
random
()
*
15
self
.
anglez
=
random
.
random
()
*
10
self
.
fov
=
42
self
.
r
=
0
self
.
shearx
=
random
.
random
()
*
0.3
self
.
sheary
=
random
.
random
()
*
0.05
self
.
borderMode
=
cv2
.
BORDER_REPLICATE
self
.
use_tia
=
use_tia
def
make
(
self
,
w
,
h
,
ang
):
"""
make
"""
self
.
anglex
=
random
.
random
()
*
5
*
flag
()
self
.
angley
=
random
.
random
()
*
5
*
flag
()
self
.
anglez
=
-
1
*
random
.
random
()
*
int
(
ang
)
*
flag
()
self
.
fov
=
42
self
.
r
=
0
self
.
shearx
=
0
self
.
sheary
=
0
self
.
borderMode
=
cv2
.
BORDER_REPLICATE
self
.
w
=
w
self
.
h
=
h
self
.
perspective
=
self
.
use_tia
self
.
stretch
=
self
.
use_tia
self
.
distort
=
self
.
use_tia
self
.
crop
=
True
self
.
affine
=
False
self
.
reverse
=
True
self
.
noise
=
True
self
.
jitter
=
True
self
.
blur
=
True
self
.
color
=
True
def
rad
(
x
):
"""
rad
...
...
@@ -554,48 +571,3 @@ def get_warpAffine(config):
rz
=
np
.
array
([[
np
.
cos
(
rad
(
anglez
)),
np
.
sin
(
rad
(
anglez
)),
0
],
[
-
np
.
sin
(
rad
(
anglez
)),
np
.
cos
(
rad
(
anglez
)),
0
]],
np
.
float32
)
return
rz
def
warp
(
img
,
ang
,
use_tia
=
True
,
prob
=
0.4
):
"""
warp
"""
h
,
w
,
_
=
img
.
shape
config
=
Config
(
use_tia
=
use_tia
)
config
.
make
(
w
,
h
,
ang
)
new_img
=
img
if
config
.
distort
:
img_height
,
img_width
=
img
.
shape
[
0
:
2
]
if
random
.
random
()
<=
prob
and
img_height
>=
20
and
img_width
>=
20
:
new_img
=
tia_distort
(
new_img
,
random
.
randint
(
3
,
6
))
if
config
.
stretch
:
img_height
,
img_width
=
img
.
shape
[
0
:
2
]
if
random
.
random
()
<=
prob
and
img_height
>=
20
and
img_width
>=
20
:
new_img
=
tia_stretch
(
new_img
,
random
.
randint
(
3
,
6
))
if
config
.
perspective
:
if
random
.
random
()
<=
prob
:
new_img
=
tia_perspective
(
new_img
)
if
config
.
crop
:
img_height
,
img_width
=
img
.
shape
[
0
:
2
]
if
random
.
random
()
<=
prob
and
img_height
>=
20
and
img_width
>=
20
:
new_img
=
get_crop
(
new_img
)
if
config
.
blur
:
if
random
.
random
()
<=
prob
:
new_img
=
blur
(
new_img
)
if
config
.
color
:
if
random
.
random
()
<=
prob
:
new_img
=
cvtColor
(
new_img
)
if
config
.
jitter
:
new_img
=
jitter
(
new_img
)
if
config
.
noise
:
if
random
.
random
()
<=
prob
:
new_img
=
add_gasuss_noise
(
new_img
)
if
config
.
reverse
:
if
random
.
random
()
<=
prob
:
new_img
=
255
-
new_img
return
new_img
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录