Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
weixin_41840029
PaddleOCR
提交
d9b7ce0a
P
PaddleOCR
项目概览
weixin_41840029
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d9b7ce0a
编写于
6月 16, 2022
作者:
A
andyjpaddle
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'dygraph' of
https://github.com/PaddlePaddle/PaddleOCR
into dygraph
上级
ee22ebb4
bdefa140
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
944 addition
and
4 deletion
+944
-4
applications/PCB字符识别/PCB字符识别.md
applications/PCB字符识别/PCB字符识别.md
+648
-0
applications/PCB字符识别/gen_data/background/bg.jpg
applications/PCB字符识别/gen_data/background/bg.jpg
+0
-0
applications/PCB字符识别/gen_data/corpus/text.txt
applications/PCB字符识别/gen_data/corpus/text.txt
+31
-0
applications/PCB字符识别/gen_data/det_background/1.png
applications/PCB字符识别/gen_data/det_background/1.png
+0
-0
applications/PCB字符识别/gen_data/det_background/2.png
applications/PCB字符识别/gen_data/det_background/2.png
+0
-0
applications/PCB字符识别/gen_data/gen.py
applications/PCB字符识别/gen_data/gen.py
+261
-0
applications/轻量级车牌识别.md
applications/轻量级车牌识别.md
+3
-3
ppstructure/table/README.md
ppstructure/table/README.md
+1
-1
未找到文件。
applications/PCB字符识别/PCB字符识别.md
0 → 100644
浏览文件 @
d9b7ce0a
# 基于PP-OCRv3的PCB字符识别
-
[
1. 项目介绍
](
#1-项目介绍
)
-
[
2. 安装说明
](
#2-安装说明
)
-
[
3. 数据准备
](
#3-数据准备
)
-
[
4. 文本检测
](
#4-文本检测
)
-
[
4.1 预训练模型直接评估
](
#41-预训练模型直接评估
)
-
[
4.2 预训练模型+验证集padding直接评估
](
#42-预训练模型验证集padding直接评估
)
-
[
4.3 预训练模型+fine-tune
](
#43-预训练模型fine-tune
)
-
[
5. 文本识别
](
#5-文本识别
)
-
[
5.1 预训练模型直接评估
](
#51-预训练模型直接评估
)
-
[
5.2 三种fine-tune方案
](
#52-三种fine-tune方案
)
-
[
6. 模型导出
](
#6-模型导出
)
-
[
7. 端对端评测
](
#7-端对端评测
)
-
[
8. Jetson部署
](
#8-Jetson部署
)
-
[
9. 总结
](
#9-总结
)
-
[
更多资源
](
#更多资源
)
# 1. 项目介绍
印刷电路板(PCB)是电子产品中的核心器件,对于板件质量的测试与监控是生产中必不可少的环节。在一些场景中,通过PCB中信号灯颜色和文字组合可以定位PCB局部模块质量问题,PCB文字识别中存在如下难点:
-
裁剪出的PCB图片宽高比例较小
-
文字区域整体面积也较小
-
包含垂直、水平多种方向文本
针对本场景,PaddleOCR基于全新的PP-OCRv3通过合成数据、微调以及其他场景适配方法完成小字符文本识别任务,满足企业上线要求。PCB检测、识别效果如
**图1**
所示:
<div
align=
center
><img
src=
'https://ai-studio-static-online.cdn.bcebos.com/95d8e95bf1ab476987f2519c0f8f0c60a0cdc2c444804ed6ab08f2f7ab054880'
,
width=
'500'
></div>
<div
align=
center
>
图1 PCB检测识别效果
</div>
注:欢迎在AIStudio领取免费算力体验线上实训,项目链接:
[
基于PP-OCRv3实现PCB字符识别
](
https://aistudio.baidu.com/aistudio/projectdetail/4008973
)
# 2. 安装说明
下载PaddleOCR源码,安装依赖环境。
```
python
# 如仍需安装or安装更新,可以执行以下步骤
git
clone
https
:
//
github
.
com
/
PaddlePaddle
/
PaddleOCR
.
git
# git clone https://gitee.com/PaddlePaddle/PaddleOCR
```
```
python
# 安装依赖包
pip
install
-
r
/
home
/
aistudio
/
PaddleOCR
/
requirements
.
txt
```
# 3. 数据准备
我们通过图片合成工具生成
**图2**
所示的PCB图片,整图只有高25、宽150左右、文字区域高9、宽45左右,包含垂直和水平2种方向的文本:
<div
align=
center
><img
src=
"https://ai-studio-static-online.cdn.bcebos.com/bb7a345687814a3d83a29790f2a2b7d081495b3a920b43988c93da6039cad653"
width=
"1000"
></div>
<div
align=
center
>
图2 数据集示例
</div>
暂时不开源生成的PCB数据集,但是通过更换背景,通过如下代码生成数据即可:
```
cd gen_data
python3 gen.py --num_img=10
```
生成图片参数解释:
```
num_img:生成图片数量
font_min_size、font_max_size:字体最大、最小尺寸
bg_path:文字区域背景存放路径
det_bg_path:整图背景存放路径
fonts_path:字体路径
corpus_path:语料路径
output_dir:生成图片存储路径
```
这里生成
**100张**
相同尺寸和文本的图片,如
**图3**
所示,方便大家跑通实验。通过如下代码解压数据集:
<div
align=
center
><img
src=
"https://ai-studio-static-online.cdn.bcebos.com/3277b750159f4b68b2b58506bfec9005d49aeb5fb1d9411e83f96f9ff7eb66a5"
width=
"1000"
></div>
<div
align=
center
>
图3 案例提供数据集示例
</div>
```
python
tar
xf
.
/
data
/
data148165
/
dataset
.
tar
-
C
.
/
```
在生成数据集的时需要生成检测和识别训练需求的格式:
-
**文本检测**
标注文件格式如下,中间用'
\t
'分隔:
```
" 图像文件名 json.dumps编码的图像标注信息"
ch4_test_images/img_61.jpg [{"transcription": "MASA", "points": [[310, 104], [416, 141], [418, 216], [312, 179]]}, {...}]
```
json.dumps编码前的图像标注信息是包含多个字典的list,字典中的
`points`
表示文本框的四个点的坐标(x, y),从左上角的点开始顺时针排列。
`transcription`
表示当前文本框的文字,
***当其内容为“###”时,表示该文本框无效,在训练时会跳过。**
*
-
**文本识别**
标注文件的格式如下, txt文件中默认请将图片路径和图片标签用'
\t
'分割,如用其他方式分割将造成训练报错。
```
" 图像文件名 图像标注信息 "
train_data/rec/train/word_001.jpg 简单可依赖
train_data/rec/train/word_002.jpg 用科技让复杂的世界更简单
...
```
# 4. 文本检测
选用飞桨OCR开发套件
[
PaddleOCR
](
https://github.com/PaddlePaddle/PaddleOCR
)
中的PP-OCRv3模型进行文本检测和识别。针对检测模型和识别模型,进行了共计9个方面的升级:
-
PP-OCRv3检测模型对PP-OCRv2中的CML协同互学习文本检测蒸馏策略进行了升级,分别针对教师模型和学生模型进行进一步效果优化。其中,在对教师模型优化时,提出了大感受野的PAN结构LK-PAN和引入了DML蒸馏策略;在对学生模型优化时,提出了残差注意力机制的FPN结构RSE-FPN。
-
PP-OCRv3的识别模块是基于文本识别算法SVTR优化。SVTR不再采用RNN结构,通过引入Transformers结构更加有效地挖掘文本行图像的上下文信息,从而提升文本识别能力。PP-OCRv3通过轻量级文本识别网络SVTR_LCNet、Attention损失指导CTC损失训练策略、挖掘文字上下文信息的数据增广策略TextConAug、TextRotNet自监督预训练模型、UDML联合互学习策略、UIM无标注数据挖掘方案,6个方面进行模型加速和效果提升。
更多细节请参考PP-OCRv3
[
技术报告
](
https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.5/doc/doc_ch/PP-OCRv3_introduction.md
)
。
我们使用
**3种方案**
进行检测模型的训练、评估:
-
**PP-OCRv3英文超轻量检测预训练模型直接评估**
-
PP-OCRv3英文超轻量检测预训练模型 +
**验证集padding**
直接评估
-
PP-OCRv3英文超轻量检测预训练模型 +
**fine-tune**
## **4.1 预训练模型直接评估**
我们首先通过PaddleOCR提供的预训练模型在验证集上进行评估,如果评估指标能满足效果,可以直接使用预训练模型,不再需要训练。
使用预训练模型直接评估步骤如下:
**1)下载预训练模型**
PaddleOCR已经提供了PP-OCR系列模型,部分模型展示如下表所示:
| 模型简介 | 模型名称 | 推荐场景 | 检测模型 | 方向分类器 | 识别模型 |
| ------------------------------------- | ----------------------- | --------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| 中英文超轻量PP-OCRv3模型(16.2M) | ch_PP-OCRv3_xx | 移动端&服务器端 |
[
推理模型
](
https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar
)
/
[
训练模型
](
https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_distill_train.tar
)
|
[
推理模型
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
)
/
[
训练模型
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar
)
|
[
推理模型
](
https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar
)
/
[
训练模型
](
https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_train.tar
)
|
| 英文超轻量PP-OCRv3模型(13.4M) | en_PP-OCRv3_xx | 移动端&服务器端 |
[
推理模型
](
https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar
)
/
[
训练模型
](
https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_distill_train.tar
)
|
[
推理模型
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
)
/
[
训练模型
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar
)
|
[
推理模型
](
https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_infer.tar
)
/
[
训练模型
](
https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_train.tar
)
|
| 中英文超轻量PP-OCRv2模型(13.0M) | ch_PP-OCRv2_xx | 移动端&服务器端 |
[
推理模型
](
https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar
)
/
[
训练模型
](
https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar
)
|
[
推理模型
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
)
/
[
预训练模型
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar
)
|
[
推理模型
](
https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar
)
/
[
训练模型
](
https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_train.tar
)
|
| 中英文超轻量PP-OCR mobile模型(9.4M) | ch_ppocr_mobile_v2.0_xx | 移动端&服务器端 |
[
推理模型
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
)
/
[
预训练模型
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar
)
|
[
推理模型
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
)
/
[
预训练模型
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar
)
|
[
推理模型
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar
)
/
[
预训练模型
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar
)
|
| 中英文通用PP-OCR server模型(143.4M) | ch_ppocr_server_v2.0_xx | 服务器端 |
[
推理模型
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar
)
/
[
预训练模型
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar
)
|
[
推理模型
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
)
/
[
预训练模型
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar
)
|
[
推理模型
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar
)
/
[
预训练模型
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar
)
|
更多模型下载(包括多语言),可以参
[
考PP-OCR系列模型下载
](
https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.5/doc/doc_ch/models_list.md
)
这里我们使用PP-OCRv3英文超轻量检测模型,下载并解压预训练模型:
```
python
# 如果更换其他模型,更新下载链接和解压指令就可以
cd
/
home
/
aistudio
/
PaddleOCR
mkdir
pretrain_models
cd
pretrain_models
# 下载英文预训练模型
wget
https
:
//
paddleocr
.
bj
.
bcebos
.
com
/
PP
-
OCRv3
/
english
/
en_PP
-
OCRv3_det_distill_train
.
tar
tar
xf
en_PP
-
OCRv3_det_distill_train
.
tar
&&
rm
-
rf
en_PP
-
OCRv3_det_distill_train
.
tar
%
cd
..
```
**模型评估**
首先修改配置文件
`configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml`
中的以下字段:
```
Eval.dataset.data_dir:指向验证集图片存放目录,'/home/aistudio/dataset'
Eval.dataset.label_file_list:指向验证集标注文件,'/home/aistudio/dataset/det_gt_val.txt'
Eval.dataset.transforms.DetResizeForTest: 尺寸
limit_side_len: 48
limit_type: 'min'
```
然后在验证集上进行评估,具体代码如下:
```
python
cd
/
home
/
aistudio
/
PaddleOCR
python
tools
/
eval
.
py
\
-
c
configs
/
det
/
ch_PP
-
OCRv3
/
ch_PP
-
OCRv3_det_cml
.
yml
\
-
o
Global
.
checkpoints
=
"./pretrain_models/en_PP-OCRv3_det_distill_train/best_accuracy"
```
## **4.2 预训练模型+验证集padding直接评估**
考虑到PCB图片比较小,宽度只有25左右、高度只有140-170左右,我们在原图的基础上进行padding,再进行检测评估,padding前后效果对比如
**图4**
所示:
<div
align=
center
><img
src=
'https://ai-studio-static-online.cdn.bcebos.com/e61e6ba685534eda992cea30a63a9c461646040ffd0c4d208a5eebb85897dcf7'
width=
'600'
></div>
<div
align=
center
>
图4 padding前后对比图
</div>
将图片都padding到300
*
300大小,因为坐标信息发生了变化,我们同时要修改标注文件,在
`/home/aistudio/dataset`
目录里也提供了padding之后的图片,大家也可以尝试训练和评估:
同上,我们需要修改配置文件
`configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml`
中的以下字段:
```
Eval.dataset.data_dir:指向验证集图片存放目录,'/home/aistudio/dataset'
Eval.dataset.label_file_list:指向验证集标注文件,/home/aistudio/dataset/det_gt_padding_val.txt
Eval.dataset.transforms.DetResizeForTest: 尺寸
limit_side_len: 1100
limit_type: 'min'
```
然后执行评估代码
```
python
cd
/
home
/
aistudio
/
PaddleOCR
python
tools
/
eval
.
py
\
-
c
configs
/
det
/
ch_PP
-
OCRv3
/
ch_PP
-
OCRv3_det_cml
.
yml
\
-
o
Global
.
checkpoints
=
"./pretrain_models/en_PP-OCRv3_det_distill_train/best_accuracy"
```
## **4.3 预训练模型+fine-tune**
基于预训练模型,在生成的1500图片上进行fine-tune训练和评估,其中train数据1200张,val数据300张,修改配置文件
`configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_student.yml`
中的以下字段:
```
Global.epoch_num: 这里设置为1,方便快速跑通,实际中根据数据量调整该值
Global.save_model_dir:模型保存路径
Global.pretrained_model:指向预训练模型路径,'./pretrain_models/en_PP-OCRv3_det_distill_train/student.pdparams'
Optimizer.lr.learning_rate:调整学习率,本实验设置为0.0005
Train.dataset.data_dir:指向训练集图片存放目录,'/home/aistudio/dataset'
Train.dataset.label_file_list:指向训练集标注文件,'/home/aistudio/dataset/det_gt_train.txt'
Train.dataset.transforms.EastRandomCropData.size:训练尺寸改为[480,64]
Eval.dataset.data_dir:指向验证集图片存放目录,'/home/aistudio/dataset/'
Eval.dataset.label_file_list:指向验证集标注文件,'/home/aistudio/dataset/det_gt_val.txt'
Eval.dataset.transforms.DetResizeForTest:评估尺寸,添加如下参数
limit_side_len: 64
limit_type:'min'
```
执行下面命令启动训练:
```
python
cd
/
home
/
aistudio
/
PaddleOCR
/
python
tools
/
train
.
py
\
-
c
configs
/
det
/
ch_PP
-
OCRv3
/
ch_PP
-
OCRv3_det_student
.
yml
```
**模型评估**
使用训练好的模型进行评估,更新模型路径
`Global.checkpoints`
:
```
python
cd
/
home
/
aistudio
/
PaddleOCR
/
python3
tools
/
eval
.
py
\
-
c
configs
/
det
/
ch_PP
-
OCRv3
/
ch_PP
-
OCRv3_det_student
.
yml
\
-
o
Global
.
checkpoints
=
"./output/ch_PP-OCR_V3_det/latest"
```
使用训练好的模型进行评估,指标如下所示:
| 序号 | 方案 | hmean | 效果提升 | 实验分析 |
| -------- | -------- | -------- | -------- | -------- |
| 1 | PP-OCRv3英文超轻量检测预训练模型 | 64.64% | - | 提供的预训练模型具有泛化能力 |
| 2 | PP-OCRv3英文超轻量检测预训练模型 + 验证集padding | 72.13% |+7.5% | padding可以提升尺寸较小图片的检测效果|
| 3 | PP-OCRv3英文超轻量检测预训练模型 + fine-tune | 100% | +27.9% | fine-tune会提升垂类场景效果 |
```
注:上述实验结果均是在1500张图片(1200张训练集,300张测试集)上训练、评估的得到,AIstudio只提供了100张数据,所以指标有所差异属于正常,只要策略有效、规律相同即可。
```
# 5. 文本识别
我们分别使用如下4种方案进行训练、评估:
-
**方案1**
:
**PP-OCRv3中英文超轻量识别预训练模型直接评估**
-
**方案2**
:PP-OCRv3中英文超轻量检测预训练模型 +
**fine-tune**
-
**方案3**
:PP-OCRv3中英文超轻量检测预训练模型 + fine-tune +
**公开通用识别数据集**
-
**方案4**
:PP-OCRv3中英文超轻量检测预训练模型 + fine-tune +
**增加PCB图像数量**
## **5.1 预训练模型直接评估**
同检测模型,我们首先使用PaddleOCR提供的识别预训练模型在PCB验证集上进行评估。
使用预训练模型直接评估步骤如下:
**1)下载预训练模型**
我们使用PP-OCRv3中英文超轻量文本识别模型,下载并解压预训练模型:
```
python
# 如果更换其他模型,更新下载链接和解压指令就可以
cd
/
home
/
aistudio
/
PaddleOCR
/
pretrain_models
/
wget
https
:
//
paddleocr
.
bj
.
bcebos
.
com
/
PP
-
OCRv3
/
chinese
/
ch_PP
-
OCRv3_rec_train
.
tar
tar
xf
ch_PP
-
OCRv3_rec_train
.
tar
&&
rm
-
rf
ch_PP
-
OCRv3_rec_train
.
tar
cd
..
```
**模型评估**
首先修改配置文件
`configs/det/ch_PP-OCRv3/ch_PP-OCRv2_rec_distillation.yml`
中的以下字段:
```
Metric.ignore_space: True:忽略空格
Eval.dataset.data_dir:指向验证集图片存放目录,'/home/aistudio/dataset'
Eval.dataset.label_file_list:指向验证集标注文件,'/home/aistudio/dataset/rec_gt_val.txt'
```
我们使用下载的预训练模型进行评估:
```
python
cd
/
home
/
aistudio
/
PaddleOCR
python3
tools
/
eval
.
py
\
-
c
configs
/
rec
/
PP
-
OCRv3
/
ch_PP
-
OCRv3_rec_distillation
.
yml
\
-
o
Global
.
checkpoints
=
pretrain_models
/
ch_PP
-
OCRv3_rec_train
/
best_accuracy
```
## **5.2 三种fine-tune方案**
方案2、3、4训练和评估方式是相同的,因此在我们了解每个技术方案之后,再具体看修改哪些参数是相同,哪些是不同的。
**方案介绍:**
1)
**方案2**
:预训练模型 +
**fine-tune**
-
在预训练模型的基础上进行fine-tune,使用1500张PCB进行训练和评估,其中训练集1200张,验证集300张。
2)
**方案3**
:预训练模型 + fine-tune +
**公开通用识别数据集**
-
当识别数据比较少的情况,可以考虑添加公开通用识别数据集。在方案2的基础上,添加公开通用识别数据集,如lsvt、rctw等。
3)
**方案4**
:预训练模型 + fine-tune +
**增加PCB图像数量**
-
如果能够获取足够多真实场景,我们可以通过增加数据量提升模型效果。在方案2的基础上,增加PCB的数量到2W张左右。
**参数修改:**
接着我们看需要修改的参数,以上方案均需要修改配置文件
`configs/rec/PP-OCRv3/ch_PP-OCRv3_rec.yml`
的参数,
**修改一次即可**
:
```
Global.pretrained_model:指向预训练模型路径,'pretrain_models/ch_PP-OCRv3_rec_train/best_accuracy'
Optimizer.lr.values:学习率,本实验设置为0.0005
Train.loader.batch_size_per_card: batch size,默认128,因为数据量小于128,因此我们设置为8,数据量大可以按默认的训练
Eval.loader.batch_size_per_card: batch size,默认128,设置为4
Metric.ignore_space: 忽略空格,本实验设置为True
```
**更换不同的方案**
每次需要修改的参数:
```
Global.epoch_num: 这里设置为1,方便快速跑通,实际中根据数据量调整该值
Global.save_model_dir:指向模型保存路径
Train.dataset.data_dir:指向训练集图片存放目录
Train.dataset.label_file_list:指向训练集标注文件
Eval.dataset.data_dir:指向验证集图片存放目录
Eval.dataset.label_file_list:指向验证集标注文件
```
同时
**方案3**
修改以下参数
```
Eval.dataset.label_file_list:添加公开通用识别数据标注文件
Eval.dataset.ratio_list:数据和公开通用识别数据每次采样比例,按实际修改即可
```
如
**图5**
所示:
<div
align=
center
><img
src=
'https://ai-studio-static-online.cdn.bcebos.com/0fa18b25819042d9bbf3397c3af0e21433b23d52f7a84b0a8681b8e6a308d433'
wdith=
''
></div>
<div
align=
center
>
图5 添加公开通用识别数据配置文件示例
</div>
我们提取Student模型的参数,在PCB数据集上进行fine-tune,可以参考如下代码:
```
python
import
paddle
# 加载预训练模型
all_params
=
paddle
.
load
(
"./pretrain_models/ch_PP-OCRv3_rec_train/best_accuracy.pdparams"
)
# 查看权重参数的keys
print
(
all_params
.
keys
())
# 学生模型的权重提取
s_params
=
{
key
[
len
(
"student_model."
):]:
all_params
[
key
]
for
key
in
all_params
if
"student_model."
in
key
}
# 查看学生模型权重参数的keys
print
(
s_params
.
keys
())
# 保存
paddle
.
save
(
s_params
,
"./pretrain_models/ch_PP-OCRv3_rec_train/student.pdparams"
)
```
修改参数后,
**每个方案**
都执行如下命令启动训练:
```
python
cd
/
home
/
aistudio
/
PaddleOCR
/
python3
tools
/
train
.
py
-
c
configs
/
rec
/
PP
-
OCRv3
/
ch_PP
-
OCRv3_rec
.
yml
```
使用训练好的模型进行评估,更新模型路径
`Global.checkpoints`
:
```
python
cd
/
home
/
aistudio
/
PaddleOCR
/
python3
tools
/
eval
.
py
\
-
c
configs
/
rec
/
PP
-
OCRv3
/
ch_PP
-
OCRv3_rec
.
yml
\
-
o
Global
.
checkpoints
=
.
/
output
/
rec_ppocr_v3
/
latest
```
所有方案评估指标如下:
| 序号 | 方案 | acc | 效果提升 | 实验分析 |
| -------- | -------- | -------- | -------- | -------- |
| 1 | PP-OCRv3中英文超轻量识别预训练模型直接评估 | 46.67% | - | 提供的预训练模型具有泛化能力 |
| 2 | PP-OCRv3中英文超轻量识别预训练模型 + fine-tune | 42.02% |-4.6% | 在数据量不足的情况,反而比预训练模型效果低(也可以通过调整超参数再试试)|
| 3 | PP-OCRv3中英文超轻量识别预训练模型 + fine-tune + 公开通用识别数据集 | 77% | +30% | 在数据量不足的情况下,可以考虑补充公开数据训练 |
| 4 | PP-OCRv3中英文超轻量识别预训练模型 + fine-tune + 增加PCB图像数量 | 99.99% | +23% | 如果能获取更多数据量的情况,可以通过增加数据量提升效果 |
```
注:上述实验结果均是在1500张图片(1200张训练集,300张测试集)、2W张图片、添加公开通用识别数据集上训练、评估的得到,AIstudio只提供了100张数据,所以指标有所差异属于正常,只要策略有效、规律相同即可。
```
# 6. 模型导出
inference 模型(paddle.jit.save保存的模型) 一般是模型训练,把模型结构和模型参数保存在文件中的固化模型,多用于预测部署场景。 训练过程中保存的模型是checkpoints模型,保存的只有模型的参数,多用于恢复训练等。 与checkpoints模型相比,inference 模型会额外保存模型的结构信息,在预测部署、加速推理上性能优越,灵活方便,适合于实际系统集成。
```
python
# 导出检测模型
python3
tools
/
export_model
.
py
\
-
c
configs
/
det
/
ch_PP
-
OCRv3
/
ch_PP
-
OCRv3_det_student
.
yml
\
-
o
Global
.
pretrained_model
=
"./output/ch_PP-OCR_V3_det/latest"
\
Global
.
save_inference_dir
=
"./inference_model/ch_PP-OCR_V3_det/"
```
因为上述模型只训练了1个epoch,因此我们使用训练最优的模型进行预测,存储在
`/home/aistudio/best_models/`
目录下,解压即可
```
python
cd
/
home
/
aistudio
/
best_models
/
wget
https
:
//
paddleocr
.
bj
.
bcebos
.
com
/
fanliku
/
PCB
/
det_ppocr_v3_en_infer_PCB
.
tar
tar
xf
/
home
/
aistudio
/
best_models
/
det_ppocr_v3_en_infer_PCB
.
tar
-
C
/
home
/
aistudio
/
PaddleOCR
/
pretrain_models
/
```
```
python
# 检测模型inference模型预测
cd
/
home
/
aistudio
/
PaddleOCR
/
python3
tools
/
infer
/
predict_det
.
py
\
--
image_dir
=
"/home/aistudio/dataset/imgs/0000.jpg"
\
--
det_algorithm
=
"DB"
\
--
det_model_dir
=
"./pretrain_models/det_ppocr_v3_en_infer_PCB/"
\
--
det_limit_side_len
=
48
\
--
det_limit_type
=
'min'
\
--
det_db_unclip_ratio
=
2.5
\
--
use_gpu
=
True
```
结果存储在
`inference_results`
目录下,检测如下图所示:
<div
align=
center
><img
src=
'https://ai-studio-static-online.cdn.bcebos.com/5939ae15a1f0445aaeec15c68107dbd897740a1ddd284bf8b583bb6242099157'
width=
''
></div>
<div
align=
center
>
图6 检测结果
</div>
同理,导出识别模型并进行推理。
```
python
# 导出识别模型
python3
tools
/
export_model
.
py
\
-
c
configs
/
rec
/
PP
-
OCRv3
/
ch_PP
-
OCRv3_rec
.
yml
\
-
o
Global
.
pretrained_model
=
"./output/rec_ppocr_v3/latest"
\
Global
.
save_inference_dir
=
"./inference_model/rec_ppocr_v3/"
```
同检测模型,识别模型也只训练了1个epoch,因此我们使用训练最优的模型进行预测,存储在
`/home/aistudio/best_models/`
目录下,解压即可
```
python
cd
/
home
/
aistudio
/
best_models
/
wget
https
:
//
paddleocr
.
bj
.
bcebos
.
com
/
fanliku
/
PCB
/
rec_ppocr_v3_ch_infer_PCB
.
tar
tar
xf
/
home
/
aistudio
/
best_models
/
rec_ppocr_v3_ch_infer_PCB
.
tar
-
C
/
home
/
aistudio
/
PaddleOCR
/
pretrain_models
/
```
```
python
# 识别模型inference模型预测
cd
/
home
/
aistudio
/
PaddleOCR
/
python3
tools
/
infer
/
predict_rec
.
py
\
--
image_dir
=
"../test_imgs/0000_rec.jpg"
\
--
rec_model_dir
=
"./pretrain_models/rec_ppocr_v3_ch_infer_PCB"
\
--
rec_image_shape
=
"3, 48, 320"
\
--
use_space_char
=
False
\
--
use_gpu
=
True
```
```
python
# 检测+识别模型inference模型预测
cd
/
home
/
aistudio
/
PaddleOCR
/
python3
tools
/
infer
/
predict_system
.
py
\
--
image_dir
=
"../test_imgs/0000.jpg"
\
--
det_model_dir
=
"./pretrain_models/det_ppocr_v3_en_infer_PCB"
\
--
det_limit_side_len
=
48
\
--
det_limit_type
=
'min'
\
--
det_db_unclip_ratio
=
2.5
\
--
rec_model_dir
=
"./pretrain_models/rec_ppocr_v3_ch_infer_PCB"
\
--
rec_image_shape
=
"3, 48, 320"
\
--
draw_img_save_dir
=
.
/
det_rec_infer
/
\
--
use_space_char
=
False
\
--
use_angle_cls
=
False
\
--
use_gpu
=
True
```
端到端预测结果存储在
`det_res_infer`
文件夹内,结果如下图所示:
<div
align=
center
><img
src=
'https://ai-studio-static-online.cdn.bcebos.com/c570f343c29846c792da56ebaca16c50708477514dd048cea8bef37ffa85d03f'
></div>
<div
align=
center
>
图7 检测+识别结果
</div>
# 7. 端对端评测
接下来介绍文本检测+文本识别的端对端指标评估方式。主要分为三步:
1)首先运行
`tools/infer/predict_system.py`
,将
`image_dir`
改为需要评估的数据文件家,得到保存的结果:
```
python
# 检测+识别模型inference模型预测
python3
tools
/
infer
/
predict_system
.
py
\
--
image_dir
=
"../dataset/imgs/"
\
--
det_model_dir
=
"./pretrain_models/det_ppocr_v3_en_infer_PCB"
\
--
det_limit_side_len
=
48
\
--
det_limit_type
=
'min'
\
--
det_db_unclip_ratio
=
2.5
\
--
rec_model_dir
=
"./pretrain_models/rec_ppocr_v3_ch_infer_PCB"
\
--
rec_image_shape
=
"3, 48, 320"
\
--
draw_img_save_dir
=
.
/
det_rec_infer
/
\
--
use_space_char
=
False
\
--
use_angle_cls
=
False
\
--
use_gpu
=
True
```
得到保存结果,文本检测识别可视化图保存在
`det_rec_infer/`
目录下,预测结果保存在
`det_rec_infer/system_results.txt`
中,格式如下:
`0018.jpg [{"transcription": "E295", "points": [[88, 33], [137, 33], [137, 40], [88, 40]]}]`
2)然后将步骤一保存的数据转换为端对端评测需要的数据格式: 修改
`tools/end2end/convert_ppocr_label.py`
中的代码,convert_label函数中设置输入标签路径,Mode,保存标签路径等,对预测数据的GTlabel和预测结果的label格式进行转换。
```
ppocr_label_gt = "/home/aistudio/dataset/det_gt_val.txt"
convert_label(ppocr_label_gt, "gt", "./save_gt_label/")
ppocr_label_gt = "/home/aistudio/PaddleOCR/PCB_result/det_rec_infer/system_results.txt"
convert_label(ppocr_label_gt, "pred", "./save_PPOCRV2_infer/")
```
运行
`convert_ppocr_label.py`
:
```
python
python3
tools
/
end2end
/
convert_ppocr_label
.
py
```
得到如下结果:
```
├── ./save_gt_label/
├── ./save_PPOCRV2_infer/
```
3) 最后,执行端对端评测,运行
`tools/end2end/eval_end2end.py`
计算端对端指标,运行方式如下:
```
python
pip
install
editdistance
python3
tools
/
end2end
/
eval_end2end
.
py
.
/
save_gt_label
/
.
/
save_PPOCRV2_infer
/
```
使用
`预训练模型+fine-tune'检测模型`
、
`预训练模型 + 2W张PCB图片funetune`
识别模型,在300张PCB图片上评估得到如下结果,fmeasure为主要关注的指标:
<div
align=
center
><img
src=
'https://ai-studio-static-online.cdn.bcebos.com/37206ea48a244212ae7a821d50d1fd51faf3d7fe97ac47a29f04dfcbb377b019'
,
width=
'700'
></div>
<div
align=
center
>
图8 端到端评估指标
</div>
```
注: 使用上述命令不能跑出该结果,因为数据集不相同,可以更换为自己训练好的模型,按上述流程运行
```
# 8. Jetson部署
我们只需要以下步骤就可以完成Jetson nano部署模型,简单易操作:
**1、在Jetson nano开发版上环境准备:**
*
安装PaddlePaddle
*
下载PaddleOCR并安装依赖
**2、执行预测**
*
将推理模型下载到jetson
*
执行检测、识别、串联预测即可
详细
[
参考流程
](
https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.5/deploy/Jetson/readme_ch.md
)
。
# 9. 总结
检测实验分别使用PP-OCRv3预训练模型在PCB数据集上进行了直接评估、验证集padding、 fine-tune 3种方案,识别实验分别使用PP-OCRv3预训练模型在PCB数据集上进行了直接评估、 fine-tune、添加公开通用识别数据集、增加PCB图片数量4种方案,指标对比如下:
*
检测
| 序号 | 方案 | hmean | 效果提升 | 实验分析 |
| ---- | -------------------------------------------------------- | ------ | -------- | ------------------------------------- |
| 1 | PP-OCRv3英文超轻量检测预训练模型直接评估 | 64.64% | - | 提供的预训练模型具有泛化能力 |
| 2 | PP-OCRv3英文超轻量检测预训练模型 + 验证集padding直接评估 | 72.13% | +7.5% | padding可以提升尺寸较小图片的检测效果 |
| 3 | PP-OCRv3英文超轻量检测预训练模型 + fine-tune | 100% | +27.9% | fine-tune会提升垂类场景效果 |
*
识别
| 序号 | 方案 | acc | 效果提升 | 实验分析 |
| ---- | ------------------------------------------------------------ | ------ | -------- | ------------------------------------------------------------ |
| 1 | PP-OCRv3中英文超轻量识别预训练模型直接评估 | 46.67% | - | 提供的预训练模型具有泛化能力 |
| 2 | PP-OCRv3中英文超轻量识别预训练模型 + fine-tune | 42.02% | -4.6% | 在数据量不足的情况,反而比预训练模型效果低(也可以通过调整超参数再试试) |
| 3 | PP-OCRv3中英文超轻量识别预训练模型 + fine-tune + 公开通用识别数据集 | 77% | +30% | 在数据量不足的情况下,可以考虑补充公开数据训练 |
| 4 | PP-OCRv3中英文超轻量识别预训练模型 + fine-tune + 增加PCB图像数量 | 99.99% | +23% | 如果能获取更多数据量的情况,可以通过增加数据量提升效果 |
*
端到端
| det | rec | fmeasure |
| --------------------------------------------- | ------------------------------------------------------------ | -------- |
| PP-OCRv3英文超轻量检测预训练模型 + fine-tune | PP-OCRv3中英文超轻量识别预训练模型 + fine-tune + 增加PCB图像数量 | 93.3% |
*结论*
PP-OCRv3的检测模型在未经过fine-tune的情况下,在PCB数据集上也有64.64%的精度,说明具有泛化能力。验证集padding之后,精度提升7.5%,在图片尺寸较小的情况,我们可以通过padding的方式提升检测效果。经过 fine-tune 后能够极大的提升检测效果,精度达到100%。
PP-OCRv3的识别模型方案1和方案2对比可以发现,当数据量不足的情况,预训练模型精度可能比fine-tune效果还要高,所以我们可以先尝试预训练模型直接评估。如果在数据量不足的情况下想进一步提升模型效果,可以通过添加公开通用识别数据集,识别效果提升30%,非常有效。最后如果我们能够采集足够多的真实场景数据集,可以通过增加数据量提升模型效果,精度达到99.99%。
# 更多资源
-
更多深度学习知识、产业案例、面试宝典等,请参考:
[
awesome-DeepLearning
](
https://github.com/paddlepaddle/awesome-DeepLearning
)
-
更多PaddleOCR使用教程,请参考:
[
PaddleOCR
](
https://github.com/PaddlePaddle/PaddleOCR/tree/dygraph
)
-
飞桨框架相关资料,请参考:
[
飞桨深度学习平台
](
https://www.paddlepaddle.org.cn/?fr=paddleEdu_aistudio
)
# 参考
*
数据生成代码库:https://github.com/zcswdt/Color_OCR_image_generator
applications/PCB字符识别/gen_data/background/bg.jpg
0 → 100644
浏览文件 @
d9b7ce0a
2.0 KB
applications/PCB字符识别/gen_data/corpus/text.txt
0 → 100644
浏览文件 @
d9b7ce0a
5ZQ
I4UL
PWL
SNOG
ZL02
1C30
O3H
YHRS
N03S
1U5Y
JTK
EN4F
YKJ
DWNH
R42W
X0V
4OF5
08AM
Y93S
GWE2
0KR
9U2A
DBQ
Y6J
ROZ
K06
KIEY
NZQJ
UN1B
6X4
\ No newline at end of file
applications/PCB字符识别/gen_data/det_background/1.png
0 → 100644
浏览文件 @
d9b7ce0a
145 字节
applications/PCB字符识别/gen_data/det_background/2.png
0 → 100644
浏览文件 @
d9b7ce0a
141 字节
applications/PCB字符识别/gen_data/gen.py
0 → 100644
浏览文件 @
d9b7ce0a
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/zcswdt/Color_OCR_image_generator
"""
import
os
import
random
from
PIL
import
Image
,
ImageDraw
,
ImageFont
import
json
import
argparse
def
get_char_lines
(
txt_root_path
):
"""
desc:get corpus line
"""
txt_files
=
os
.
listdir
(
txt_root_path
)
char_lines
=
[]
for
txt
in
txt_files
:
f
=
open
(
os
.
path
.
join
(
txt_root_path
,
txt
),
mode
=
'r'
,
encoding
=
'utf-8'
)
lines
=
f
.
readlines
()
f
.
close
()
for
line
in
lines
:
char_lines
.
append
(
line
.
strip
())
return
char_lines
def
get_horizontal_text_picture
(
image_file
,
chars
,
fonts_list
,
cf
):
"""
desc:gen horizontal text picture
"""
img
=
Image
.
open
(
image_file
)
if
img
.
mode
!=
'RGB'
:
img
=
img
.
convert
(
'RGB'
)
img_w
,
img_h
=
img
.
size
# random choice font
font_path
=
random
.
choice
(
fonts_list
)
# random choice font size
font_size
=
random
.
randint
(
cf
.
font_min_size
,
cf
.
font_max_size
)
font
=
ImageFont
.
truetype
(
font_path
,
font_size
)
ch_w
=
[]
ch_h
=
[]
for
ch
in
chars
:
wt
,
ht
=
font
.
getsize
(
ch
)
ch_w
.
append
(
wt
)
ch_h
.
append
(
ht
)
f_w
=
sum
(
ch_w
)
f_h
=
max
(
ch_h
)
# add space
char_space_width
=
max
(
ch_w
)
f_w
+=
(
char_space_width
*
(
len
(
chars
)
-
1
))
x1
=
random
.
randint
(
0
,
img_w
-
f_w
)
y1
=
random
.
randint
(
0
,
img_h
-
f_h
)
x2
=
x1
+
f_w
y2
=
y1
+
f_h
crop_y1
=
y1
crop_x1
=
x1
crop_y2
=
y2
crop_x2
=
x2
best_color
=
(
0
,
0
,
0
)
draw
=
ImageDraw
.
Draw
(
img
)
for
i
,
ch
in
enumerate
(
chars
):
draw
.
text
((
x1
,
y1
),
ch
,
best_color
,
font
=
font
)
x1
+=
(
ch_w
[
i
]
+
char_space_width
)
crop_img
=
img
.
crop
((
crop_x1
,
crop_y1
,
crop_x2
,
crop_y2
))
return
crop_img
,
chars
def
get_vertical_text_picture
(
image_file
,
chars
,
fonts_list
,
cf
):
"""
desc:gen vertical text picture
"""
img
=
Image
.
open
(
image_file
)
if
img
.
mode
!=
'RGB'
:
img
=
img
.
convert
(
'RGB'
)
img_w
,
img_h
=
img
.
size
# random choice font
font_path
=
random
.
choice
(
fonts_list
)
# random choice font size
font_size
=
random
.
randint
(
cf
.
font_min_size
,
cf
.
font_max_size
)
font
=
ImageFont
.
truetype
(
font_path
,
font_size
)
ch_w
=
[]
ch_h
=
[]
for
ch
in
chars
:
wt
,
ht
=
font
.
getsize
(
ch
)
ch_w
.
append
(
wt
)
ch_h
.
append
(
ht
)
f_w
=
max
(
ch_w
)
f_h
=
sum
(
ch_h
)
x1
=
random
.
randint
(
0
,
img_w
-
f_w
)
y1
=
random
.
randint
(
0
,
img_h
-
f_h
)
x2
=
x1
+
f_w
y2
=
y1
+
f_h
crop_y1
=
y1
crop_x1
=
x1
crop_y2
=
y2
crop_x2
=
x2
best_color
=
(
0
,
0
,
0
)
draw
=
ImageDraw
.
Draw
(
img
)
i
=
0
for
ch
in
chars
:
draw
.
text
((
x1
,
y1
),
ch
,
best_color
,
font
=
font
)
y1
=
y1
+
ch_h
[
i
]
i
=
i
+
1
crop_img
=
img
.
crop
((
crop_x1
,
crop_y1
,
crop_x2
,
crop_y2
))
crop_img
=
crop_img
.
transpose
(
Image
.
ROTATE_90
)
return
crop_img
,
chars
def
get_fonts
(
fonts_path
):
"""
desc: get all fonts
"""
font_files
=
os
.
listdir
(
fonts_path
)
fonts_list
=
[]
for
font_file
in
font_files
:
font_path
=
os
.
path
.
join
(
fonts_path
,
font_file
)
fonts_list
.
append
(
font_path
)
return
fonts_list
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'--num_img'
,
type
=
int
,
default
=
30
,
help
=
"Number of images to generate"
)
parser
.
add_argument
(
'--font_min_size'
,
type
=
int
,
default
=
11
)
parser
.
add_argument
(
'--font_max_size'
,
type
=
int
,
default
=
12
,
help
=
"Help adjust the size of the generated text and the size of the picture"
)
parser
.
add_argument
(
'--bg_path'
,
type
=
str
,
default
=
'./background'
,
help
=
'The generated text pictures will be pasted onto the pictures of this folder'
)
parser
.
add_argument
(
'--det_bg_path'
,
type
=
str
,
default
=
'./det_background'
,
help
=
'The generated text pictures will use the pictures of this folder as the background'
)
parser
.
add_argument
(
'--fonts_path'
,
type
=
str
,
default
=
'../../StyleText/fonts'
,
help
=
'The font used to generate the picture'
)
parser
.
add_argument
(
'--corpus_path'
,
type
=
str
,
default
=
'./corpus'
,
help
=
'The corpus used to generate the text picture'
)
parser
.
add_argument
(
'--output_dir'
,
type
=
str
,
default
=
'./output/'
,
help
=
'Images save dir'
)
cf
=
parser
.
parse_args
()
# save path
if
not
os
.
path
.
exists
(
cf
.
output_dir
):
os
.
mkdir
(
cf
.
output_dir
)
# get corpus
txt_root_path
=
cf
.
corpus_path
char_lines
=
get_char_lines
(
txt_root_path
=
txt_root_path
)
# get all fonts
fonts_path
=
cf
.
fonts_path
fonts_list
=
get_fonts
(
fonts_path
)
# rec bg
img_root_path
=
cf
.
bg_path
imnames
=
os
.
listdir
(
img_root_path
)
# det bg
det_bg_path
=
cf
.
det_bg_path
bg_pics
=
os
.
listdir
(
det_bg_path
)
# OCR det files
det_val_file
=
open
(
cf
.
output_dir
+
'det_gt_val.txt'
,
'w'
,
encoding
=
'utf-8'
)
det_train_file
=
open
(
cf
.
output_dir
+
'det_gt_train.txt'
,
'w'
,
encoding
=
'utf-8'
)
# det imgs
det_save_dir
=
'imgs/'
if
not
os
.
path
.
exists
(
cf
.
output_dir
+
det_save_dir
):
os
.
mkdir
(
cf
.
output_dir
+
det_save_dir
)
det_val_save_dir
=
'imgs_val/'
if
not
os
.
path
.
exists
(
cf
.
output_dir
+
det_val_save_dir
):
os
.
mkdir
(
cf
.
output_dir
+
det_val_save_dir
)
# OCR rec files
rec_val_file
=
open
(
cf
.
output_dir
+
'rec_gt_val.txt'
,
'w'
,
encoding
=
'utf-8'
)
rec_train_file
=
open
(
cf
.
output_dir
+
'rec_gt_train.txt'
,
'w'
,
encoding
=
'utf-8'
)
# rec imgs
rec_save_dir
=
'rec_imgs/'
if
not
os
.
path
.
exists
(
cf
.
output_dir
+
rec_save_dir
):
os
.
mkdir
(
cf
.
output_dir
+
rec_save_dir
)
rec_val_save_dir
=
'rec_imgs_val/'
if
not
os
.
path
.
exists
(
cf
.
output_dir
+
rec_val_save_dir
):
os
.
mkdir
(
cf
.
output_dir
+
rec_val_save_dir
)
val_ratio
=
cf
.
num_img
*
0.2
# val dataset ratio
print
(
'start generating...'
)
for
i
in
range
(
0
,
cf
.
num_img
):
imname
=
random
.
choice
(
imnames
)
img_path
=
os
.
path
.
join
(
img_root_path
,
imname
)
rnd
=
random
.
random
()
# gen horizontal text picture
if
rnd
<
0.5
:
gen_img
,
chars
=
get_horizontal_text_picture
(
img_path
,
char_lines
[
i
],
fonts_list
,
cf
)
ori_w
,
ori_h
=
gen_img
.
size
gen_img
=
gen_img
.
crop
((
0
,
3
,
ori_w
,
ori_h
))
# gen vertical text picture
else
:
gen_img
,
chars
=
get_vertical_text_picture
(
img_path
,
char_lines
[
i
],
fonts_list
,
cf
)
ori_w
,
ori_h
=
gen_img
.
size
gen_img
=
gen_img
.
crop
((
3
,
0
,
ori_w
,
ori_h
))
ori_w
,
ori_h
=
gen_img
.
size
# rec imgs
save_img_name
=
str
(
i
).
zfill
(
4
)
+
'.jpg'
if
i
<
val_ratio
:
save_dir
=
os
.
path
.
join
(
rec_val_save_dir
,
save_img_name
)
line
=
save_dir
+
'
\t
'
+
char_lines
[
i
]
+
'
\n
'
rec_val_file
.
write
(
line
)
else
:
save_dir
=
os
.
path
.
join
(
rec_save_dir
,
save_img_name
)
line
=
save_dir
+
'
\t
'
+
char_lines
[
i
]
+
'
\n
'
rec_train_file
.
write
(
line
)
gen_img
.
save
(
cf
.
output_dir
+
save_dir
,
quality
=
95
,
subsampling
=
0
)
# det img
# random choice bg
bg_pic
=
random
.
sample
(
bg_pics
,
1
)[
0
]
det_img
=
Image
.
open
(
os
.
path
.
join
(
det_bg_path
,
bg_pic
))
# the PCB position is fixed, modify it according to your own scenario
if
bg_pic
==
'1.png'
:
x1
=
38
y1
=
3
else
:
x1
=
34
y1
=
1
det_img
.
paste
(
gen_img
,
(
x1
,
y1
))
# text pos
chars_pos
=
[[
x1
,
y1
],
[
x1
+
ori_w
,
y1
],
[
x1
+
ori_w
,
y1
+
ori_h
],
[
x1
,
y1
+
ori_h
]]
label
=
[{
"transcription"
:
char_lines
[
i
],
"points"
:
chars_pos
}]
if
i
<
val_ratio
:
save_dir
=
os
.
path
.
join
(
det_val_save_dir
,
save_img_name
)
det_val_file
.
write
(
save_dir
+
'
\t
'
+
json
.
dumps
(
label
,
ensure_ascii
=
False
)
+
'
\n
'
)
else
:
save_dir
=
os
.
path
.
join
(
det_save_dir
,
save_img_name
)
det_train_file
.
write
(
save_dir
+
'
\t
'
+
json
.
dumps
(
label
,
ensure_ascii
=
False
)
+
'
\n
'
)
det_img
.
save
(
cf
.
output_dir
+
save_dir
,
quality
=
95
,
subsampling
=
0
)
applications/轻量级车牌识别.md
浏览文件 @
d9b7ce0a
...
...
@@ -249,7 +249,7 @@ tar -xf ch_PP-OCRv3_det_distill_train.tar
cd
/home/aistudio/PaddleOCR
```
预训练模型下载完成后,我们使用
[
ch_PP-OCRv3_det_student.yml
](
../configs/
chepai
/ch_PP-OCRv3_det_student.yml
)
配置文件进行后续实验,在开始评估之前需要对配置文件中部分字段进行设置,具体如下:
预训练模型下载完成后,我们使用
[
ch_PP-OCRv3_det_student.yml
](
../configs/
det/ch_PP-OCRv3
/ch_PP-OCRv3_det_student.yml
)
配置文件进行后续实验,在开始评估之前需要对配置文件中部分字段进行设置,具体如下:
1.
模型存储和训练相关:
1.
Global.pretrained_model: 指向PP-OCRv3文本检测预训练模型地址
...
...
@@ -787,12 +787,12 @@ python tools/infer/predict_system.py \
-
端侧部署
端侧部署我们采用基于 PaddleLite 的 cpp 推理。Paddle Lite是飞桨轻量化推理引擎,为手机、IOT端提供高效推理能力,并广泛整合跨平台硬件,为端侧部署及应用落地问题提供轻量化的部署方案。具体可参考
[
PaddleOCR lite教程
](
../d
ygraph/d
eploy/lite/readme_ch.md
)
端侧部署我们采用基于 PaddleLite 的 cpp 推理。Paddle Lite是飞桨轻量化推理引擎,为手机、IOT端提供高效推理能力,并广泛整合跨平台硬件,为端侧部署及应用落地问题提供轻量化的部署方案。具体可参考
[
PaddleOCR lite教程
](
../deploy/lite/readme_ch.md
)
### 4.5 实验总结
我们分别使用PP-OCRv3中英文超轻量预训练模型在车牌数据集上进行了直接评估和 fine-tune 和 fine-tune +量化3种方案的实验,并基于
[
PaddleOCR lite教程
](
https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph
/deploy/lite/readme_ch.md
)
进行了速度测试,指标对比如下:
我们分别使用PP-OCRv3中英文超轻量预训练模型在车牌数据集上进行了直接评估和 fine-tune 和 fine-tune +量化3种方案的实验,并基于
[
PaddleOCR lite教程
](
..
/deploy/lite/readme_ch.md
)
进行了速度测试,指标对比如下:
-
检测
...
...
ppstructure/table/README.md
浏览文件 @
d9b7ce0a
...
...
@@ -18,7 +18,7 @@ The table recognition mainly contains three models
The table recognition flow chart is as follows
![
tableocr_pipeline
](
../
../doc
/table/tableocr_pipeline_en.jpg
)
![
tableocr_pipeline
](
../
docs
/table/tableocr_pipeline_en.jpg
)
1.
The coordinates of single-line text is detected by DB model, and then sends it to the recognition model to get the recognition result.
2.
The table structure and cell coordinates is predicted by RARE model.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录