diff --git a/test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml b/test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml new file mode 100644 index 0000000000000000000000000000000000000000..15119bb2a9de02c19684d21ad5a1859db94895ce --- /dev/null +++ b/test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml @@ -0,0 +1,103 @@ +Global: + use_gpu: True + epoch_num: 21 + log_smooth_window: 20 + print_batch_step: 10 + save_model_dir: ./output/rec/nrtr/ + save_epoch_step: 1 + # evaluation is run every 2000 iterations + eval_batch_step: [0, 2000] + cal_metric_during_train: True + pretrained_model: + checkpoints: + save_inference_dir: + use_visualdl: False + infer_img: doc/imgs_words_en/word_10.png + # for data or label process + character_dict_path: ppocr/utils/EN_symbol_dict.txt + max_text_length: 25 + infer_mode: False + use_space_char: False + save_res_path: ./output/rec/predicts_nrtr.txt + +Optimizer: + name: Adam + beta1: 0.9 + beta2: 0.99 + clip_norm: 5.0 + lr: + name: Cosine + learning_rate: 0.0005 + warmup_epoch: 2 + regularizer: + name: 'L2' + factor: 0. + +Architecture: + model_type: rec + algorithm: NRTR + in_channels: 1 + Transform: + Backbone: + name: MTB + cnn_num: 2 + Head: + name: Transformer + d_model: 512 + num_encoder_layers: 6 + beam_size: -1 # When Beam size is greater than 0, it means to use beam search when evaluation. + + +Loss: + name: NRTRLoss + smoothing: True + +PostProcess: + name: NRTRLabelDecode + +Metric: + name: RecMetric + main_indicator: acc + +Train: + dataset: + name: SimpleDataSet + data_dir: ./train_data/ic15_data/ + label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"] + transforms: + - DecodeImage: # load image + img_mode: BGR + channel_first: False + - NRTRLabelEncode: # Class handling label + - NRTRRecResizeImg: + image_shape: [100, 32] + resize_type: PIL # PIL or OpenCV + - KeepKeys: + keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order + loader: + shuffle: True + batch_size_per_card: 512 + drop_last: True + num_workers: 8 + +Eval: + dataset: + name: SimpleDataSet + data_dir: ./train_data/ic15_data + label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"] + transforms: + - DecodeImage: # load image + img_mode: BGR + channel_first: False + - NRTRLabelEncode: # Class handling label + - NRTRRecResizeImg: + image_shape: [100, 32] + resize_type: PIL # PIL or OpenCV + - KeepKeys: + keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order + loader: + shuffle: False + drop_last: False + batch_size_per_card: 256 + num_workers: 1 + use_shared_memory: False diff --git a/test_tipc/configs/rec_mtb_nrtr/train_infer_python.txt b/test_tipc/configs/rec_mtb_nrtr/train_infer_python.txt new file mode 100644 index 0000000000000000000000000000000000000000..67630d858c7633daf8e1800b1ab10adb86e6c3bc --- /dev/null +++ b/test_tipc/configs/rec_mtb_nrtr/train_infer_python.txt @@ -0,0 +1,52 @@ +===========================train_params=========================== +model_name:rec_mtb_nrtr +python:python3.7 +gpu_list:0|0,1 +Global.use_gpu:True|True +Global.auto_cast:null +Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300 +Global.save_model_dir:./output/ +Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128 +Global.pretrained_model:null +train_model_name:latest +train_infer_img_dir:./inference/rec_inference +null:null +## +trainer:norm_train +norm_train:tools/train.py -c test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml -o +pact_train:null +fpgm_train:null +distill_train:null +null:null +null:null +## +===========================eval_params=========================== +eval:tools/eval.py -c test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml -o +null:null +## +===========================infer_params=========================== +Global.save_inference_dir:./output/ +Global.pretrained_model: +norm_export:tools/export_model.py -c test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml -o +quant_export:null +fpgm_export:null +distill_export:null +export1:null +export2:null +## +infer_model:null +infer_export:tools/export_model.py -c test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml -o +infer_quant:False +inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/EN_symbol_dict.txt --rec_image_shape="1,32,100" --rec_algorithm="NRTR" +--use_gpu:True|False +--enable_mkldnn:True|False +--cpu_threads:1|6 +--rec_batch_num:1|6 +--use_tensorrt:True|False +--precision:fp32|int8 +--rec_model_dir: +--image_dir:./inference/rec_inference +--save_log_path:./test/output/ +--benchmark:True +null:null + diff --git a/test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml b/test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml new file mode 100644 index 0000000000000000000000000000000000000000..2b14c047d4645104fb9532a1b391072dc341f3b7 --- /dev/null +++ b/test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml @@ -0,0 +1,103 @@ +Global: + use_gpu: True + epoch_num: 72 + log_smooth_window: 20 + print_batch_step: 10 + save_model_dir: ./output/rec/rec_mv3_tps_bilstm_att/ + save_epoch_step: 3 + # evaluation is run every 5000 iterations after the 4000th iteration + eval_batch_step: [0, 2000] + cal_metric_during_train: True + pretrained_model: + checkpoints: + save_inference_dir: + use_visualdl: False + infer_img: doc/imgs_words/ch/word_1.jpg + # for data or label process + character_dict_path: + max_text_length: 25 + infer_mode: False + use_space_char: False + save_res_path: ./output/rec/predicts_mv3_tps_bilstm_att.txt + + +Optimizer: + name: Adam + beta1: 0.9 + beta2: 0.999 + lr: + learning_rate: 0.0005 + regularizer: + name: 'L2' + factor: 0.00001 + +Architecture: + model_type: rec + algorithm: RARE + Transform: + name: TPS + num_fiducial: 20 + loc_lr: 0.1 + model_name: small + Backbone: + name: MobileNetV3 + scale: 0.5 + model_name: large + Neck: + name: SequenceEncoder + encoder_type: rnn + hidden_size: 96 + Head: + name: AttentionHead + hidden_size: 96 + + +Loss: + name: AttentionLoss + +PostProcess: + name: AttnLabelDecode + +Metric: + name: RecMetric + main_indicator: acc + +Train: + dataset: + name: SimpleDataSet + data_dir: ./train_data/ic15_data/ + label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"] + transforms: + - DecodeImage: # load image + img_mode: BGR + channel_first: False + - AttnLabelEncode: # Class handling label + - RecResizeImg: + image_shape: [3, 32, 100] + - KeepKeys: + keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order + loader: + shuffle: True + batch_size_per_card: 256 + drop_last: True + num_workers: 8 + +Eval: + dataset: + name: SimpleDataSet + data_dir: ./train_data/ic15_data + label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"] + transforms: + - DecodeImage: # load image + img_mode: BGR + channel_first: False + - AttnLabelEncode: # Class handling label + - RecResizeImg: + image_shape: [3, 32, 100] + - KeepKeys: + keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order + loader: + shuffle: False + drop_last: False + batch_size_per_card: 256 + num_workers: 1 diff --git a/test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/train_infer_python.txt b/test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/train_infer_python.txt new file mode 100644 index 0000000000000000000000000000000000000000..3791aa17b2b5a16565ab3456932e43fd77254472 --- /dev/null +++ b/test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/train_infer_python.txt @@ -0,0 +1,52 @@ +===========================train_params=========================== +model_name:rec_mv3_tps_bilstm_att_v2.0 +python:python3.7 +gpu_list:0|0,1 +Global.use_gpu:True|True +Global.auto_cast:null +Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300 +Global.save_model_dir:./output/ +Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128 +Global.pretrained_model:null +train_model_name:latest +train_infer_img_dir:./inference/rec_inference +null:null +## +trainer:norm_train +norm_train:tools/train.py -c test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml -o +pact_train:null +fpgm_train:null +distill_train:null +null:null +null:null +## +===========================eval_params=========================== +eval:tools/eval.py -c test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml -o +null:null +## +===========================infer_params=========================== +Global.save_inference_dir:./output/ +Global.pretrained_model: +norm_export:tools/export_model.py -c test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml -o +quant_export:null +fpgm_export:null +distill_export:null +export1:null +export2:null +## +infer_model:null +infer_export:tools/export_model.py -c test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml -o +infer_quant:False +inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100" --rec_algorithm="RARE" +--use_gpu:True|False +--enable_mkldnn:True|False +--cpu_threads:1|6 +--rec_batch_num:1|6 +--use_tensorrt:True|False +--precision:fp32|int8 +--rec_model_dir: +--image_dir:./inference/rec_inference +--save_log_path:./test/output/ +--benchmark:True +null:null + diff --git a/test_tipc/configs/rec_r31_sar/rec_r31_sar.yml b/test_tipc/configs/rec_r31_sar/rec_r31_sar.yml new file mode 100644 index 0000000000000000000000000000000000000000..36bc3c5d12c55de574507cd613da772bbe0d2ced --- /dev/null +++ b/test_tipc/configs/rec_r31_sar/rec_r31_sar.yml @@ -0,0 +1,98 @@ +Global: + use_gpu: true + epoch_num: 5 + log_smooth_window: 20 + print_batch_step: 20 + save_model_dir: ./sar_rec + save_epoch_step: 1 + # evaluation is run every 2000 iterations + eval_batch_step: [0, 2000] + cal_metric_during_train: True + pretrained_model: + checkpoints: + save_inference_dir: + use_visualdl: False + infer_img: + # for data or label process + character_dict_path: ppocr/utils/dict90.txt + max_text_length: 30 + infer_mode: False + use_space_char: False + rm_symbol: True + save_res_path: ./output/rec/predicts_sar.txt + +Optimizer: + name: Adam + beta1: 0.9 + beta2: 0.999 + lr: + name: Piecewise + decay_epochs: [3, 4] + values: [0.001, 0.0001, 0.00001] + regularizer: + name: 'L2' + factor: 0 + +Architecture: + model_type: rec + algorithm: SAR + Transform: + Backbone: + name: ResNet31 + Head: + name: SARHead + +Loss: + name: SARLoss + +PostProcess: + name: SARLabelDecode + +Metric: + name: RecMetric + + +Train: + dataset: + name: SimpleDataSet + data_dir: ./train_data/ic15_data/ + label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"] + transforms: + - DecodeImage: # load image + img_mode: BGR + channel_first: False + - SARLabelEncode: # Class handling label + - SARRecResizeImg: + image_shape: [3, 48, 48, 160] # h:48 w:[48,160] + width_downsample_ratio: 0.25 + - KeepKeys: + keep_keys: ['image', 'label', 'valid_ratio'] # dataloader will return list in this order + loader: + shuffle: True + batch_size_per_card: 64 + drop_last: True + num_workers: 8 + use_shared_memory: False + +Eval: + dataset: + name: SimpleDataSet + data_dir: ./train_data/ic15_data + label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"] + transforms: + - DecodeImage: # load image + img_mode: BGR + channel_first: False + - SARLabelEncode: # Class handling label + - SARRecResizeImg: + image_shape: [3, 48, 48, 160] + width_downsample_ratio: 0.25 + - KeepKeys: + keep_keys: ['image', 'label', 'valid_ratio'] # dataloader will return list in this order + loader: + shuffle: False + drop_last: False + batch_size_per_card: 64 + num_workers: 4 + use_shared_memory: False + diff --git a/test_tipc/configs/rec_r31_sar/train_infer_python.txt b/test_tipc/configs/rec_r31_sar/train_infer_python.txt new file mode 100644 index 0000000000000000000000000000000000000000..5cc31b7b8b793e7c82f6676f1fec9a5e8b2393f4 --- /dev/null +++ b/test_tipc/configs/rec_r31_sar/train_infer_python.txt @@ -0,0 +1,52 @@ +===========================train_params=========================== +model_name:rec_r31_sar +python:python3.7 +gpu_list:0|0,1 +Global.use_gpu:True|True +Global.auto_cast:null +Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300 +Global.save_model_dir:./output/ +Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128 +Global.pretrained_model:null +train_model_name:latest +train_infer_img_dir:./inference/rec_inference +null:null +## +trainer:norm_train +norm_train:tools/train.py -c test_tipc/configs/rec_r31_sar/rec_r31_sar.yml -o +pact_train:null +fpgm_train:null +distill_train:null +null:null +null:null +## +===========================eval_params=========================== +eval:tools/eval.py -c test_tipc/configs/rec_r31_sar/rec_r31_sar.yml -o +null:null +## +===========================infer_params=========================== +Global.save_inference_dir:./output/ +Global.pretrained_model: +norm_export:tools/export_model.py -c test_tipc/configs/rec_r31_sar/rec_r31_sar.yml -o +quant_export:null +fpgm_export:null +distill_export:null +export1:null +export2:null +## +infer_model:null +infer_export:tools/export_model.py -c test_tipc/configs/rec_r31_sar/rec_r31_sar.yml -o +infer_quant:False +inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/dict90.txt --rec_image_shape="3,48,48,160" --rec_algorithm="SAR" +--use_gpu:True|False +--enable_mkldnn:True|False +--cpu_threads:1|6 +--rec_batch_num:1|6 +--use_tensorrt:True|False +--precision:fp32|fp16|int8 +--rec_model_dir: +--image_dir:./inference/rec_inference +--save_log_path:./test/output/ +--benchmark:True +null:null + diff --git a/test_tipc/configs/rec_r34_vd_tps_bilstm_att_v2.0/rec_r34_vd_tps_bilstm_att.yml b/test_tipc/configs/rec_r34_vd_tps_bilstm_att_v2.0/rec_r34_vd_tps_bilstm_att.yml new file mode 100644 index 0000000000000000000000000000000000000000..5dd797b0ec742932ca7f85353b9ea4c5eb637edd --- /dev/null +++ b/test_tipc/configs/rec_r34_vd_tps_bilstm_att_v2.0/rec_r34_vd_tps_bilstm_att.yml @@ -0,0 +1,102 @@ +Global: + use_gpu: True + epoch_num: 400 + log_smooth_window: 20 + print_batch_step: 10 + save_model_dir: ./output/rec/b3_rare_r34_none_gru/ + save_epoch_step: 3 + # evaluation is run every 5000 iterations after the 4000th iteration + eval_batch_step: [0, 2000] + cal_metric_during_train: True + pretrained_model: + checkpoints: + save_inference_dir: + use_visualdl: False + infer_img: doc/imgs_words/ch/word_1.jpg + # for data or label process + character_dict_path: + max_text_length: 25 + infer_mode: False + use_space_char: False + save_res_path: ./output/rec/predicts_b3_rare_r34_none_gru.txt + + +Optimizer: + name: Adam + beta1: 0.9 + beta2: 0.999 + lr: + learning_rate: 0.0005 + regularizer: + name: 'L2' + factor: 0.00000 + +Architecture: + model_type: rec + algorithm: RARE + Transform: + name: TPS + num_fiducial: 20 + loc_lr: 0.1 + model_name: large + Backbone: + name: ResNet + layers: 34 + Neck: + name: SequenceEncoder + encoder_type: rnn + hidden_size: 256 #96 + Head: + name: AttentionHead # AttentionHead + hidden_size: 256 # + l2_decay: 0.00001 + +Loss: + name: AttentionLoss + +PostProcess: + name: AttnLabelDecode + +Metric: + name: RecMetric + main_indicator: acc + +Train: + dataset: + name: SimpleDataSet + data_dir: ./train_data/ic15_data/ + label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"] + transforms: + - DecodeImage: # load image + img_mode: BGR + channel_first: False + - AttnLabelEncode: # Class handling label + - RecResizeImg: + image_shape: [3, 32, 100] + - KeepKeys: + keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order + loader: + shuffle: True + batch_size_per_card: 256 + drop_last: True + num_workers: 8 + +Eval: + dataset: + name: SimpleDataSet + data_dir: ./train_data/ic15_data + label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"] + transforms: + - DecodeImage: # load image + img_mode: BGR + channel_first: False + - AttnLabelEncode: # Class handling label + - RecResizeImg: + image_shape: [3, 32, 100] + - KeepKeys: + keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order + loader: + shuffle: False + drop_last: False + batch_size_per_card: 256 + num_workers: 8 diff --git a/test_tipc/configs/rec_r34_vd_tps_bilstm_att_v2.0/train_infer_python.txt b/test_tipc/configs/rec_r34_vd_tps_bilstm_att_v2.0/train_infer_python.txt new file mode 100644 index 0000000000000000000000000000000000000000..e816868f33de7ca8794068e8498f6f7845df0324 --- /dev/null +++ b/test_tipc/configs/rec_r34_vd_tps_bilstm_att_v2.0/train_infer_python.txt @@ -0,0 +1,52 @@ +===========================train_params=========================== +model_name:rec_r34_vd_tps_bilstm_att_v2.0 +python:python3.7 +gpu_list:0|0,1 +Global.use_gpu:True|True +Global.auto_cast:null +Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300 +Global.save_model_dir:./output/ +Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128 +Global.pretrained_model:null +train_model_name:latest +train_infer_img_dir:./inference/rec_inference +null:null +## +trainer:norm_train +norm_train:tools/train.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_att_v2.0/rec_r34_vd_tps_bilstm_att.yml -o +pact_train:null +fpgm_train:null +distill_train:null +null:null +null:null +## +===========================eval_params=========================== +eval:tools/eval.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_att_v2.0/rec_r34_vd_tps_bilstm_att.yml -o +null:null +## +===========================infer_params=========================== +Global.save_inference_dir:./output/ +Global.pretrained_model: +norm_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_att_v2.0/rec_r34_vd_tps_bilstm_att.yml -o +quant_export:null +fpgm_export:null +distill_export:null +export1:null +export2:null +## +infer_model:null +infer_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_att_v2.0/rec_r34_vd_tps_bilstm_att.yml -o +infer_quant:False +inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100" --rec_algorithm="RARE" +--use_gpu:True|False +--enable_mkldnn:True|False +--cpu_threads:1|6 +--rec_batch_num:1|6 +--use_tensorrt:True|False +--precision:fp32|int8 +--rec_model_dir: +--image_dir:./inference/rec_inference +--save_log_path:./test/output/ +--benchmark:True +null:null + diff --git a/test_tipc/configs/rec_r50_fpn_vd_none_srn/rec_r50_fpn_srn.yml b/test_tipc/configs/rec_r50_fpn_vd_none_srn/rec_r50_fpn_srn.yml new file mode 100644 index 0000000000000000000000000000000000000000..41e525205d2b047934a69a8b41a5e7d776990097 --- /dev/null +++ b/test_tipc/configs/rec_r50_fpn_vd_none_srn/rec_r50_fpn_srn.yml @@ -0,0 +1,108 @@ +Global: + use_gpu: True + epoch_num: 72 + log_smooth_window: 20 + print_batch_step: 5 + save_model_dir: ./output/rec/srn_new + save_epoch_step: 3 + # evaluation is run every 5000 iterations after the 4000th iteration + eval_batch_step: [0, 5000] + cal_metric_during_train: True + pretrained_model: + checkpoints: + save_inference_dir: + use_visualdl: False + infer_img: doc/imgs_words/ch/word_1.jpg + # for data or label process + character_dict_path: + max_text_length: 25 + num_heads: 8 + infer_mode: False + use_space_char: False + save_res_path: ./output/rec/predicts_srn.txt + + +Optimizer: + name: Adam + beta1: 0.9 + beta2: 0.999 + clip_norm: 10.0 + lr: + learning_rate: 0.0001 + +Architecture: + model_type: rec + algorithm: SRN + in_channels: 1 + Transform: + Backbone: + name: ResNetFPN + Head: + name: SRNHead + max_text_length: 25 + num_heads: 8 + num_encoder_TUs: 2 + num_decoder_TUs: 4 + hidden_dims: 512 + +Loss: + name: SRNLoss + +PostProcess: + name: SRNLabelDecode + +Metric: + name: RecMetric + main_indicator: acc + +Train: + dataset: + name: SimpleDataSet + data_dir: ./train_data/ic15_data/ + label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"] + transforms: + - DecodeImage: # load image + img_mode: BGR + channel_first: False + - SRNLabelEncode: # Class handling label + - SRNRecResizeImg: + image_shape: [1, 64, 256] + - KeepKeys: + keep_keys: ['image', + 'label', + 'length', + 'encoder_word_pos', + 'gsrm_word_pos', + 'gsrm_slf_attn_bias1', + 'gsrm_slf_attn_bias2'] # dataloader will return list in this order + loader: + shuffle: False + batch_size_per_card: 64 + drop_last: False + num_workers: 4 + +Eval: + dataset: + name: SimpleDataSet + data_dir: ./train_data/ic15_data + label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"] + transforms: + - DecodeImage: # load image + img_mode: BGR + channel_first: False + - SRNLabelEncode: # Class handling label + - SRNRecResizeImg: + image_shape: [1, 64, 256] + - KeepKeys: + keep_keys: ['image', + 'label', + 'length', + 'encoder_word_pos', + 'gsrm_word_pos', + 'gsrm_slf_attn_bias1', + 'gsrm_slf_attn_bias2'] + loader: + shuffle: False + drop_last: False + batch_size_per_card: 32 + num_workers: 4 diff --git a/test_tipc/configs/rec_r50_fpn_vd_none_srn/train_infer_python.txt b/test_tipc/configs/rec_r50_fpn_vd_none_srn/train_infer_python.txt new file mode 100644 index 0000000000000000000000000000000000000000..b3549c635f267cdb0b494341e9f250669cd74bfe --- /dev/null +++ b/test_tipc/configs/rec_r50_fpn_vd_none_srn/train_infer_python.txt @@ -0,0 +1,52 @@ +===========================train_params=========================== +model_name:rec_r50_fpn_vd_none_srn +python:python3.7 +gpu_list:0|0,1 +Global.use_gpu:True|True +Global.auto_cast:null +Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300 +Global.save_model_dir:./output/ +Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128 +Global.pretrained_model:null +train_model_name:latest +train_infer_img_dir:./inference/rec_inference +null:null +## +trainer:norm_train +norm_train:tools/train.py -c test_tipc/configs/rec_r50_fpn_vd_none_srn/rec_r50_fpn_srn.yml -o +pact_train:null +fpgm_train:null +distill_train:null +null:null +null:null +## +===========================eval_params=========================== +eval:tools/eval.py -c test_tipc/configs/rec_r50_fpn_vd_none_srn/rec_r50_fpn_srn.yml -o +null:null +## +===========================infer_params=========================== +Global.save_inference_dir:./output/ +Global.pretrained_model: +norm_export:tools/export_model.py -c test_tipc/configs/rec_r50_fpn_vd_none_srn/rec_r50_fpn_srn.yml -o +quant_export:null +fpgm_export:null +distill_export:null +export1:null +export2:null +## +infer_model:null +infer_export:tools/export_model.py -c test_tipc/configs/rec_r50_fpn_vd_none_srn/rec_r50_fpn_srn.yml -o +infer_quant:False +inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="1,64,256" --rec_algorithm="SRN" --use_space_char=False +--use_gpu:True|False +--enable_mkldnn:True|False +--cpu_threads:1|6 +--rec_batch_num:1|6 +--use_tensorrt:True|False +--precision:fp32|int8 +--rec_model_dir: +--image_dir:./inference/rec_inference +--save_log_path:./test/output/ +--benchmark:True +null:null +