提交 cdd5b386 编写于 作者: D dyning

fix mainpage

上级 268562b7
# 简介 ## 简介
PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力使用者训练出更好的模型,并应用落地。 PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力使用者训练出更好的模型,并应用落地。
## 特性: ## 特性
- 超轻量级模型 - 超轻量级中文OCR:支持中英文数字组合识别、竖排文本识别、长文本识别,总模型仅8.6M,其中检测模型DB(4.1M)+识别模型CRNN(4.5M)
- (检测模型4.1M + 识别模型4.5M = 8.6M) - 多种文本检测训练算法,EAST、DB
- 支持竖排文字识别 - 多种文本识别训练算法,Rosetta、CRNN、STAR-Net、RARE
- (单模型同时支持横排和竖排文字识别)
- 支持长文本识别 ## **超轻量级中文OCR体验**
- 支持中英文数字组合识别
- 提供训练代码
- 支持模型部署
![](./doc/imgs_draw/11.jpg) ![](./doc/imgs_draw/11.jpg)
注:更多效果展示请见文末。 上图是超轻量级中文OCR模型效果展示,该模型更多效果图请见文末。
#### 1.运行环境配置
## **快速运行** 前请先参考[快速安装](./doc/installation.md)配置PaddleOCR运行环境。
运行前请先参考[快速安装](./doc/installation.md)配置PaddleOCR运行环境。 #### 2.模型下载
下载inference模型
``` ```
# 创建inference模型保存目录 # 创建模型保存目录
mkdir inference && cd inference && mkdir det && mkdir rec mkdir inference && cd inference && mkdir det && mkdir rec
# 下载检测inference模型/ 识别 inference 模型 # 下载inference模型文件包
wget -P ./inference https://paddleocr.bj.bcebos.com/inference.tar wget -P ./inference https://paddleocr.bj.bcebos.com/inference.tar
# inference模型文件包解压
tar -xf ./inference/inference.tar
``` ```
实现文本检测、识别串联推理,预测$image_dir$指定的单张图像: #### 3.单张图像或者图像集合预测
实现文本检测、识别串联推理,在执行预测时,需要通过参数image_dir指定单张图像或者图像集合的路径、参数det_model_dir指定检测inference模型的路径和参数rec_model_dir指定识别inference模型的路径。
``` ```
# 设置PYTHONPATH环境变量
export PYTHONPATH=. export PYTHONPATH=.
python tools/infer/predict_eval.py --image_dir="/Demo.jpg" --det_model_dir="./inference/det/" --rec_model_dir="./inference/rec/"
```
在执行预测时,通过参数det_model_dir以及rec_model_dir设置存储inference 模型的路径。
实现文本检测、识别串联推理,预测$image_dir$指指定文件夹下的所有图像: # 预测image_dir指定的单张图像
``` python tools/infer/predict_system.py --image_dir="/Demo.jpg" --det_model_dir="./inference/det/" --rec_model_dir="./inference/rec/"
python tools/infer/predict_eval.py --image_dir="/test_imgs/" --det_model_dir="./inference/det/" --rec_model_dir="./inference/rec/"
# 预测image_dir指定的图像集合
python tools/infer/predict_system.py --image_dir="/test_imgs/" --det_model_dir="./inference/det/" --rec_model_dir="./inference/rec/"
``` ```
更多的文本检测、识别串联推理使用方式请参考文档教程中[基于推理引擎预测](./doc/inference.md)
## 文档教程 ## 文档教程
- [快速安装](./doc/installation.md) - [快速安装](./doc/installation.md)
- [文本识别模型训练/评估/预测](./doc/detection.md) - [文本检测模型训练/评估/预测](./doc/detection.md)
- [文本预测模型训练/评估/预测](./doc/recognition.md) - [文本识别模型训练/评估/预测](./doc/recognition.md)
- [基于inference model预测](./doc/) - [基于推理引擎预测](./doc/inference.md)
## 文本检测算法: ## 文本检测算法
PaddleOCR开源的文本检测算法列表: PaddleOCR开源的文本检测算法列表:
- [x] [EAST](https://arxiv.org/abs/1704.03155) - [x] [EAST](https://arxiv.org/abs/1704.03155)
- [x] [DB](https://arxiv.org/abs/1911.08947) - [x] [DB](https://arxiv.org/abs/1911.08947)
- [ ] [SAST](https://arxiv.org/abs/1908.05498) - [ ] [SAST](https://arxiv.org/abs/1908.05498)(百度自研, comming soon)
在ICDAR2015文本检测公开数据集上,算法效果如下:
算法效果:
|模型|骨干网络|Hmean| |模型|骨干网络|Hmean|
|-|-|-| |-|-|-|
|EAST|[ResNet50_vd](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)|85.85%| |EAST|[ResNet50_vd](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)|85.85%|
...@@ -63,9 +66,9 @@ PaddleOCR开源的文本检测算法列表: ...@@ -63,9 +66,9 @@ PaddleOCR开源的文本检测算法列表:
|DB|[ResNet50_vd](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)|83.30%| |DB|[ResNet50_vd](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)|83.30%|
|DB|[MobileNetV3](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)|73.00%| |DB|[MobileNetV3](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)|73.00%|
PaddleOCR文本检测算法的训练与使用请参考[文档](./doc/detection.md) PaddleOCR文本检测算法的训练和使用请参考文档教程中[文本检测模型训练/评估/预测](./doc/detection.md)
## 文本识别算法: ## 文本识别算法
PaddleOCR开源的文本识别算法列表: PaddleOCR开源的文本识别算法列表:
- [x] [CRNN](https://arxiv.org/abs/1507.05717) - [x] [CRNN](https://arxiv.org/abs/1507.05717)
...@@ -74,7 +77,7 @@ PaddleOCR开源的文本识别算法列表: ...@@ -74,7 +77,7 @@ PaddleOCR开源的文本识别算法列表:
- [x] [RARE](https://arxiv.org/abs/1603.03915v1) - [x] [RARE](https://arxiv.org/abs/1603.03915v1)
- [ ] [SRN]((https://arxiv.org/abs/2003.12294))(百度自研, comming soon) - [ ] [SRN]((https://arxiv.org/abs/2003.12294))(百度自研, comming soon)
算法效果如下表所示,精度指标是在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上的评测结果的平均值。 参考[DTRB](https://arxiv.org/abs/1904.01906)文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别合成数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行效果评估,算法效果如下:
|模型|骨干网络|ACC| |模型|骨干网络|ACC|
|-|-|-| |-|-|-|
...@@ -87,12 +90,10 @@ PaddleOCR开源的文本识别算法列表: ...@@ -87,12 +90,10 @@ PaddleOCR开源的文本识别算法列表:
|RARE|[Resnet34_vd](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)|84.90%| |RARE|[Resnet34_vd](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)|84.90%|
|RARE|[MobileNetV3](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)|83.32%| |RARE|[MobileNetV3](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)|83.32%|
PaddleOCR文本识别算法的训练与使用请参考[文档](./doc/recognition.md) PaddleOCR文本识别算法的训练和使用请参考文档教程中[文本识别模型训练/评估/预测](./doc/recognition.md)
## TODO ## 端到端OCR算法
**端到端OCR算法** - [ ] [End2End-PSL](https://arxiv.org/abs/1909.07808)(百度自研, comming soon)
PaddleOCR即将开源百度自研端对端OCR模型[End2End-PSL](https://arxiv.org/abs/1909.07808),敬请关注。
- [ ] End2End-PSL (百度自研, comming soon)
## 效果展示 ## 效果展示
![](./doc/imgs_draw/1.jpg) ![](./doc/imgs_draw/1.jpg)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册