The picture above is the result of our Ultra-lightweight Chinese OCR model. For more testing results, please see the end of the article [Ultra-lightweight Chinese OCR results](#Ultra-lightweight-Chinese-OCR-results) and [General Chinese OCR results](#General-Chinese-OCR-results).
请先参考[快速安装](./doc/installation.md)配置PaddleOCR运行环境。
#### 1. Environment configuration
#### 2.inference模型下载
Please see [Quick installation](./doc/installation.md)
#### (1) Download Ultra-lightweight Chinese OCR models
*If wget is not installed in the windows system, you can copy the link to the browser to download the model. After model downloaded, unzip it and place it in the corresponding directory*
#### (1)超轻量级中文OCR模型下载
```
```
mkdir inference && cd inference
mkdir inference && cd inference
# 下载超轻量级中文OCR模型的检测模型并解压
# Download the detection part of the Ultra-lightweight Chinese OCR and decompress it
wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar && tar xf ch_det_mv3_db_infer.tar
wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar && tar xf ch_det_mv3_db_infer.tar
# 下载超轻量级中文OCR模型的识别模型并解压
# Download the recognition part of the Ultra-lightweight Chinese OCR and decompress it
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar && tar xf ch_rec_mv3_crnn_infer.tar
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar && tar xf ch_rec_mv3_crnn_infer.tar
cd ..
cd ..
```
```
#### (2)通用中文OCR模型下载
#### (2) Download General Chinese OCR models
```
```
mkdir inference && cd inference
mkdir inference && cd inference
# 下载通用中文OCR模型的检测模型并解压
# Download the detection part of the general Chinese OCR model and decompress it
wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar && tar xf ch_det_r50_vd_db_infer.tar
wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar && tar xf ch_det_r50_vd_db_infer.tar
# 下载通用中文OCR模型的识别模型并解压
# Download the recognition part of the generic Chinese OCR model and decompress it
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar && tar xf ch_rec_r34_vd_crnn_infer.tar
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar && tar xf ch_rec_r34_vd_crnn_infer.tar
The following code implements text detection and recognition inference tandemly. When performing prediction, you need to specify the path of a single image or image folder through the parameter `image_dir`, the parameter `det_model_dir` specifies the path to detection model, and the parameter `rec_model_dir` specifies the path to the recognition model. The visual prediction results are saved to the `./inference_results` folder by default.
```
```
# 设置PYTHONPATH环境变量
# Set PYTHONPATH environment variable
export PYTHONPATH=.
export PYTHONPATH=.
# windows下设置环境变量
# Setting environment variable in Windows
SET PYTHONPATH=.
SET PYTHONPATH=.
# 预测image_dir指定的单张图像
# Prediction on a single image by specifying image path to image_dir
To run inference of the Generic Chinese OCR model, follow these steps above to download the corresponding models and update the relevant parameters. Examples are as follows:
```
```
# 预测image_dir指定的单张图像
# Prediction on a single image by specifying image path to image_dir
For use of [LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/datasets.md#1icdar2019-lsvt) street view dataset with a total of 3w training data,the related configuration and pre-trained models for Chinese detection task are as follows:
*Note: For the training and evaluation of the above DB model, post-processing parameters box_thresh=0.6 and unclip_ratio=1.5 need to be set. If using different datasets and different models for training, these two parameters can be adjusted for better result.
For the training guide and use of PaddleOCR text detection algorithms, please refer to the document [Text detection model training/evaluation/prediction](./doc/detection.md)
## 文本识别算法
## Text recognition algorithm
PaddleOCR开源的文本识别算法列表:
PaddleOCR open-source text recognition algorithms list:
Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation result of these above text recognition (using MJSynth and SynthText for training, evaluate on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE) is as follow:
We use [LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/datasets.md#1icdar2019-lsvt) dataset and cropout 30w traning data from original photos by using position groundtruth and make some calibration needed. In addition, based on the LSVT corpus, 500w synthetic data is generated to train the Chinese model. The related configuration and pre-trained models are as follows:
|Ultra-lightweight Chinese model|MobileNetV3|rec_chinese_lite_train.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|
Please refer to the document for training guide and use of PaddleOCR text recognition algorithms [Text recognition model training/evaluation/prediction](./doc/recognition.md)
2. Error when using attention-based recognition model: KeyError: 'predict'
3.**关于推理速度**
The inference of recognition model based on attention loss is still being debugged. For Chinese text recognition, it is recommended to choose the recognition model based on CTC loss first. In practice, it is also found that the recognition model based on attention loss is not as effective as the one based on CTC loss.
When there are a lot of texts in the picture, the prediction time will increase. You can use `--rec_batch_num` to set a smaller prediction batch size. The default value is 30, which can be changed to 10 or other values.
It is expected that the service deployment based on Serving and the mobile deployment based on Paddle Lite will be released successively in mid-to-late June. Stay tuned for more updates.
5. Release time of self-developed algorithm
Baidu Self-developed algorithms such as SAST, SRN and end2end PSL will be released in June or July. Please be patient.
[more](./doc/FAQ.md)
[more](./doc/FAQ.md)
## 欢迎加入PaddleOCR技术交流群
## Welcome to the PaddleOCR technical exchange group
加微信:paddlehelp,备注OCR,小助手拉你进群~
Add Wechat: paddlehelp, remark OCR, small assistant will pull you into the group ~