提交 c6c28785 编写于 作者: T tink2123

fix max_wh_ratio for predict

上级 bb98faff
......@@ -60,12 +60,12 @@ class TextRecognizer(object):
self.loss_type = 'srn'
self.char_ops = CharacterOps(char_ops_params)
def resize_norm_img(self, img, wh_ratio):
def resize_norm_img(self, img, max_wh_ratio):
imgC, imgH, imgW = self.rec_image_shape
assert imgC == img.shape[2]
max_wh_ration = max(wh_ratio, imgW * 1.0 / imgH)
wh_ratio = max(max_wh_ratio, imgW * 1.0 / imgH)
if self.character_type == "ch":
imgW = int((32 * max_wh_ratio))
imgW = int((32 * wh_ratio))
h, w = img.shape[:2]
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
......@@ -174,14 +174,16 @@ class TextRecognizer(object):
for beg_img_no in range(0, img_num, batch_num):
end_img_no = min(img_num, beg_img_no + batch_num)
norm_img_batch = []
max_wh_ratio = 0
for ino in range(beg_img_no, end_img_no):
# h, w = img_list[ino].shape[0:2]
h, w = img_list[indices[ino]].shape[0:2]
wh_ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, wh_ratio)
for ino in range(beg_img_no, end_img_no):
if self.loss_type != "srn":
norm_img = self.resize_norm_img(img_list[indices[ino]],
wh_ratio)
max_wh_ratio)
norm_img = norm_img[np.newaxis, :]
norm_img_batch.append(norm_img)
else:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册