diff --git a/doc/doc_ch/algorithm_rec_can.md b/doc/doc_ch/algorithm_rec_can.md
index 2cc5a72bf1767fd2a90278c7b91662c922e2697e..13e868e505262c1c353ec58981e609f1b0091c1d 100644
--- a/doc/doc_ch/algorithm_rec_can.md
+++ b/doc/doc_ch/algorithm_rec_can.md
@@ -57,24 +57,22 @@ python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs
**注意:**
- 我们提供的数据集,即[`CROHME数据集`](https://paddleocr.bj.bcebos.com/dataset/CROHME.tar)将手写公式存储为黑底白字的格式,若您自行准备的数据集与之相反,即以白底黑字模式存储,请在训练时做出如下修改
```
-python3 tools/train.py -c configs/rec/rec_d28_can.yml
--o Train.dataset.transforms.GrayImageChannelFormat.inverse=False
+python3 tools/train.py -c configs/rec/rec_d28_can.yml -o Train.dataset.transforms.GrayImageChannelFormat.inverse=False
```
- 默认每训练1个epoch(1105次iteration)进行1次评估,若您更改训练的batch_size,或更换数据集,请在训练时作出如下修改
```
-python3 tools/train.py -c configs/rec/rec_d28_can.yml
--o Global.eval_batch_step=[0, {length_of_dataset//batch_size}]
+python3 tools/train.py -c configs/rec/rec_d28_can.yml -o Global.eval_batch_step=[0, {length_of_dataset//batch_size}]
```
#
### 3.2 评估
-可下载已训练完成的[模型文件](https://paddleocr.bj.bcebos.com/contribution/can_train.tar),使用如下命令进行评估:
+可下载已训练完成的[模型文件](https://paddleocr.bj.bcebos.com/contribution/rec_d28_can_train.tar),使用如下命令进行评估:
```shell
# 注意将pretrained_model的路径设置为本地路径。若使用自行训练保存的模型,请注意修改路径和文件名为{path/to/weights}/{model_name}。
-python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_d28_can.yml -o Global.pretrained_model=./rec_d28_can_train/CAN
+python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_d28_can.yml -o Global.pretrained_model=./rec_d28_can_train/best_accuracy.pdparams
```
@@ -83,7 +81,7 @@ python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec
使用如下命令进行单张图片预测:
```shell
# 注意将pretrained_model的路径设置为本地路径。
-python3 tools/infer_rec.py -c configs/rec/rec_d28_can.yml -o Architecture.Head.attdecoder.is_train=False Global.infer_img='./doc/datasets/crohme_demo/hme_00.jpg' Global.pretrained_model=./rec_d28_can_train/CAN
+python3 tools/infer_rec.py -c configs/rec/rec_d28_can.yml -o Architecture.Head.attdecoder.is_train=False Global.infer_img='./doc/datasets/crohme_demo/hme_00.jpg' Global.pretrained_model=./rec_d28_can_train/best_accuracy.pdparams
# 预测文件夹下所有图像时,可修改infer_img为文件夹,如 Global.infer_img='./doc/datasets/crohme_demo/'。
```
@@ -94,11 +92,11 @@ python3 tools/infer_rec.py -c configs/rec/rec_d28_can.yml -o Architecture.Head.a
### 4.1 Python推理
-首先将训练得到best模型,转换成inference model。这里以训练完成的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/contribution/can_train.tar) ),可以使用如下命令进行转换:
+首先将训练得到best模型,转换成inference model。这里以训练完成的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/contribution/rec_d28_can_train.tar) ),可以使用如下命令进行转换:
```shell
# 注意将pretrained_model的路径设置为本地路径。
-python3 tools/export_model.py -c configs/rec/rec_d28_can.yml -o Global.pretrained_model=./rec_d28_can_train/CAN Global.save_inference_dir=./inference/rec_d28_can/ Architecture.Head.attdecoder.is_train=False
+python3 tools/export_model.py -c configs/rec/rec_d28_can.yml -o Global.pretrained_model=./rec_d28_can_train/best_accuracy.pdparams Global.save_inference_dir=./inference/rec_d28_can/ Architecture.Head.attdecoder.is_train=False
# 目前的静态图模型默认的输出长度最大为36,如果您需要预测更长的序列,请在导出模型时指定其输出序列为合适的值,例如 Architecture.Head.max_text_length=72
```
diff --git a/doc/doc_en/algorithm_rec_can_en.md b/doc/doc_en/algorithm_rec_can_en.md
index 5cc7038f668e394c48169e46a83a3f0e1a62a0e1..ef114990a8cc50d04a12acd65c477509e4b0ca42 100644
--- a/doc/doc_en/algorithm_rec_can_en.md
+++ b/doc/doc_en/algorithm_rec_can_en.md
@@ -53,14 +53,14 @@ Evaluation:
```
# GPU evaluation
-python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_d28_can.yml -o Global.pretrained_model=./rec_d28_can_train/CAN
+python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_d28_can.yml -o Global.pretrained_model=./rec_d28_can_train/best_accuracy.pdparams
```
Prediction:
```
# The configuration file used for prediction must match the training
-python3 tools/infer_rec.py -c configs/rec/rec_d28_can.yml -o Architecture.Head.attdecoder.is_train=False Global.infer_img='./doc/crohme_demo/hme_00.jpg' Global.pretrained_model=./rec_d28_can_train/CAN
+python3 tools/infer_rec.py -c configs/rec/rec_d28_can.yml -o Architecture.Head.attdecoder.is_train=False Global.infer_img='./doc/crohme_demo/hme_00.jpg' Global.pretrained_model=./rec_d28_can_train/best_accuracy.pdparams
```
@@ -71,7 +71,7 @@ python3 tools/infer_rec.py -c configs/rec/rec_d28_can.yml -o Architecture.Head.a
First, the model saved during the CAN handwritten mathematical expression recognition training process is converted into an inference model. you can use the following command to convert:
```
-python3 tools/export_model.py -c configs/rec/rec_d28_can.yml -o Global.save_inference_dir=./inference/rec_d28_can/ Architecture.Head.attdecoder.is_train=False
+python3 tools/export_model.py -c configs/rec/rec_d28_can.yml -o Global.pretrained_model=./rec_d28_can_train/best_accuracy.pdparams Global.save_inference_dir=./inference/rec_d28_can/ Architecture.Head.attdecoder.is_train=False
# The default output max length of the model is 36. If you need to predict a longer sequence, please specify its output sequence as an appropriate value when exporting the model, as: Architecture.Head.max_ text_ length=72
```
@@ -79,7 +79,7 @@ python3 tools/export_model.py -c configs/rec/rec_d28_can.yml -o Global.save_infe
For CAN handwritten mathematical expression recognition model inference, the following commands can be executed:
```
-python3 tools/infer/predict_rec.py --image_dir="./doc/crohme_demo/hme_00.jpg" --rec_algorithm="CAN" --rec_batch_num=1 --rec_model_dir="./inference/rec_d28_can/" --rec_char_dict_path="./ppocr/utils/dict/latex_symbol_dict.txt"
+python3 tools/infer/predict_rec.py --image_dir="./doc/datasets/crohme_demo/hme_00.jpg" --rec_algorithm="CAN" --rec_batch_num=1 --rec_model_dir="./inference/rec_d28_can/" --rec_char_dict_path="./ppocr/utils/dict/latex_symbol_dict.txt"
# If you need to predict on a picture with black characters on a white background, please set: -- rec_ image_ inverse=False
```
diff --git a/test_tipc/configs/sr_telescope/sr_telescope.yml b/test_tipc/configs/sr_telescope/sr_telescope.yml
index d3c10448e423ff0305950ea39664379e60f8a113..c78a42d0efb7bbcdd182861a6474d87c9f68b3d4 100644
--- a/test_tipc/configs/sr_telescope/sr_telescope.yml
+++ b/test_tipc/configs/sr_telescope/sr_telescope.yml
@@ -51,7 +51,7 @@ Metric:
Train:
dataset:
name: LMDBDataSetSR
- data_dir: ./train_data/TextZoom/train
+ data_dir: ./train_data/TextZoom/test
transforms:
- SRResize:
imgH: 32
diff --git a/test_tipc/configs/sr_telescope/train_infer_python.txt b/test_tipc/configs/sr_telescope/train_infer_python.txt
index 4dcfa29ee146b3b2662122966d859142bb0ed0c5..7235f07e8c72411f6ae979e666e624c32de935b9 100644
--- a/test_tipc/configs/sr_telescope/train_infer_python.txt
+++ b/test_tipc/configs/sr_telescope/train_infer_python.txt
@@ -4,12 +4,12 @@ python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
-Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300
+Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=16|whole_train_whole_infer=16
Global.pretrained_model:null
train_model_name:latest
-train_infer_img_dir:./inference/sr_inference
+train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
@@ -21,7 +21,7 @@ null:null
null:null
##
===========================eval_params===========================
-eval:tools/eval.py -c test_tipc/configs/sr_telescope/sr_telescope.yml -o
+eval:null
null:null
##
===========================infer_params===========================
@@ -44,8 +44,8 @@ inference:tools/infer/predict_sr.py --sr_image_shape="1,32,128" --rec_algorithm=
--rec_batch_num:1
--use_tensorrt:False
--precision:fp32
---rec_model_dir:
---image_dir:./inference/sr_inference
+--sr_model_dir:
+--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
diff --git a/test_tipc/prepare.sh b/test_tipc/prepare.sh
index 452ec31c48f2b5bd807a3a0a7c6bd0d95b520e28..02ee8a24d241195d1330ea42fc05ed35dd7a87b7 100644
--- a/test_tipc/prepare.sh
+++ b/test_tipc/prepare.sh
@@ -150,6 +150,7 @@ if [ ${MODE} = "lite_train_lite_infer" ];then
# pretrain lite train data
wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams --no-check-certificate
wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar --no-check-certificate
+ cd ./pretrain_models/ && tar xf det_mv3_db_v2.0_train.tar && cd ../
if [[ ${model_name} =~ "ch_PP-OCRv2_det" ]];then
wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar --no-check-certificate
cd ./pretrain_models/ && tar xf ch_PP-OCRv2_det_distill_train.tar && cd ../
@@ -179,7 +180,6 @@ if [ ${MODE} = "lite_train_lite_infer" ];then
wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/ppstructure/models/tablemaster/table_structure_tablemaster_train.tar --no-check-certificate
cd ./pretrain_models/ && tar xf table_structure_tablemaster_train.tar && cd ../
fi
- cd ./pretrain_models/ && tar xf det_mv3_db_v2.0_train.tar && cd ../
rm -rf ./train_data/icdar2015
rm -rf ./train_data/ic15_data
rm -rf ./train_data/pubtabnet