Document Visual Q&A, mainly for the image content of the question and answer, DOC-VQA is a type of VQA task, DOC-VQA mainly asks questions about the textual content of text images.
The DOC-VQA algorithm in PP-Structure is developed based on PaddleNLP natural language processing algorithm library.
The main features are as follows:
- Integrated LayoutXLM model and PP-OCR prediction engine.
- Support Semantic Entity Recognition (SER) and Relation Extraction (RE) tasks based on multi-modal methods. Based on SER task, text recognition and classification in images can be completed. Based on THE RE task, we can extract the relation of the text content in the image, such as judge the problem pair.
- Support custom training for SER and RE tasks.
- Support OCR+SER end-to-end system prediction and evaluation.
- Support OCR+SER+RE end-to-end system prediction.
**Note**: This project is based on the open source implementation of [LayoutXLM](https://arxiv.org/pdf/2104.08836.pdf) on Paddle 2.2, and at the same time, after in-depth polishing by the flying Paddle team and the Industrial and **Commercial Bank of China** in the scene of real estate certificate, jointly open source.
## 1.Performance
We evaluated the algorithm on [XFUN](https://github.com/doc-analysis/XFUND) 's Chinese data set, and the performance is as follows
| Model | Task | F1 | Model Download Link |
|:---:|:---:|:---:| :---:|
| LayoutXLM | RE | 0.7113 | [Link](https://paddleocr.bj.bcebos.com/pplayout/PP-Layout_v1.0_re_pretrained.tar) |
| LayoutXLM | SER | 0.9056 | [Link](https://paddleocr.bj.bcebos.com/pplayout/PP-Layout_v1.0_ser_pretrained.tar) |
| LayoutLM | SER | 0.78 | [Link](https://paddleocr.bj.bcebos.com/pplayout/LayoutLM_ser_pretrained.tar) |
## 2.Demonstration
**Note**: the test images are from the xfun dataset.
In the figure, the red box represents the question, the blue box represents the answer, and the question and answer are connected by green lines. The corresponding category and OCR recognition results are also marked at the top left of the OCR detection box.
# Note: the code cloud hosting code may not be able to synchronize the update of this GitHub project in real time, with a delay of 3 ~ 5 days. Please give priority to the recommended method.
```
-**(3) Install PaddleNLP**
```bash
# You need to use the latest code version of paddlenlp for installation
Download address of processed xfun Chinese dataset: [https://paddleocr.bj.bcebos.com/dataset/XFUND.tar](https://paddleocr.bj.bcebos.com/dataset/XFUND.tar)。
Download and unzip the dataset, and then place the dataset in the current directory.
If you want to convert data sets in other languages in xfun, you can refer to [xfun data conversion script.](helper/trans_xfun_data.py))
If you want to experience the prediction process directly, you can download the pre training model provided by us, skip the training process and predict directly.
It will end up in output_res The visual image of the prediction result and the text file of the prediction result are saved in the res directory. The file name is infer_ results.txt.
The visual image of the prediction result and the text file of the prediction result are saved in the output_res file folder, the file name is`infer_results.txt`。
* Concatenation results using OCR engine + SER+ RE