From b3d8d7731d8858c0001d4a5f248f14117c4a1260 Mon Sep 17 00:00:00 2001 From: Leif <4603009@qq.com> Date: Mon, 20 Dec 2021 22:18:39 +0800 Subject: [PATCH] Update README_ch Update README_ch --- README_ch.md | 102 ++++++++++++++++++--------------------------------- 1 file changed, 36 insertions(+), 66 deletions(-) diff --git a/README_ch.md b/README_ch.md index 4511d713..3b6df907 100755 --- a/README_ch.md +++ b/README_ch.md @@ -3,10 +3,6 @@

- - ------------------------------------------------------------------------------------------- -

@@ -20,16 +16,15 @@ ## 简介 -PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力使用者训练出更好的模型,并应用落地。 +PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力开发者训练出更好的模型,并应用落地。 -**近期更新** +## 近期更新 - PaddleOCR研发团队对最新发版内容技术深入解读,9月8日晚上20:15,[课程回放](https://aistudio.baidu.com/aistudio/education/group/info/6758)。 -- 2021.9.7 发布PaddleOCR v2.3,发布[PP-OCRv2](#PP-OCRv2),CPU推理速度相比于PP-OCR server提升220%;效果相比于PP-OCR mobile 提升7%。 +- 2021.9.7 发布PaddleOCR v2.3与[PP-OCRv2](#PP-OCRv2),CPU推理速度相比于PP-OCR server提升220%;效果相比于PP-OCR mobile 提升7%。 - 2021.8.3 发布PaddleOCR v2.2,新增文档结构分析[PP-Structure](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.2/ppstructure/README_ch.md)工具包,支持版面分析与表格识别(含Excel导出)。 -- 2021.6.29 [FAQ](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.2/doc/doc_ch/FAQ.md)新增5个高频问题,总数248个,每周一都会更新,欢迎大家持续关注。 -- 2021.4.8 release 2.1版本,新增AAAI 2021论文[端到端识别算法PGNet](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.2/doc/doc_ch/pgnet.md)开源,[多语言模型](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.2/doc/doc_ch/multi_languages.md)支持种类增加到80+。 -- [More](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.2/doc/doc_ch/update.md) + +> 完整PaddleOCR更新时间线可参考[文档](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.2/doc/doc_ch/update.md)。 ## 特性 @@ -38,54 +33,35 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力 - 超轻量PP-OCR mobile移动端系列:检测(3.0M)+方向分类器(1.4M)+ 识别(5.0M)= 9.4M - 通用PPOCR server系列:检测(47.1M)+方向分类器(1.4M)+ 识别(94.9M)= 143.4M - 支持中英文数字组合识别、竖排文本识别、长文本识别 - - 支持多语言识别:韩语、日语、德语、法语 + - 支持多语言识别:韩语、日语、德语、法语等 - 丰富易用的OCR相关工具组件 - 半自动数据标注工具PPOCRLabel:支持快速高效的数据标注 - 数据合成工具Style-Text:批量合成大量与目标场景类似的图像 - - 文档分析能力PP-Structure:版面分析与表格识别 + - 文档分析能力PP-Structure:支持版面分析与表格识别(含Excel导出) - 支持用户自定义训练,提供丰富的预测推理部署方案 - 支持PIP快速安装使用 - 可运行于Linux、Windows、MacOS等多种系统 -## 效果展示 - -

- - -
- -上图是通用PP-OCR server模型效果展示,更多效果图请见[效果展示页面](./doc/doc_ch/visualization.md)。 - - -## 欢迎加入PaddleOCR技术交流群 -- 微信扫描二维码加入官方交流群,获得更高效的问题答疑,与各行各业开发者充分交流,期待您的加入。 +> 上述内容的使用方法建议从文档教程中的快速开始体验 -
- -
+ -## 快速体验 -- PC端:超轻量级中文OCR在线体验地址:https://www.paddlepaddle.org.cn/hub/scene/ocr +## 社区、社区贡献与社区常规赛 -- 移动端:[安装包DEMO下载地址](https://ai.baidu.com/easyedge/app/openSource?from=paddlelite)(基于EasyEdge和Paddle-Lite, 支持iOS和Android系统),Android手机也可以直接扫描下面二维码安装体验。 +- 加入社区:微信扫描下方二维码加入官方交流群,与各行各业开发者充分交流,期待您的加入。 +- 社区贡献:[社区贡献](./doc/doc_ch/thirdparty.md)文档中包含了社区用户**使用PaddleOCR开发的各种工具、应用**以及**为PaddleOCR贡献的功能、优化的文档与代码**等,是官方为社区开发者打造的荣誉墙、也是帮助优质项目宣传的广播站。如果您的OCR项目未被收集在文档中,可根据文档说明与我们联系。最新社区贡献可查看[此处](#社区贡献)。 +- 社区常规赛:作为社区贡献的具体承载形式,社区常规赛是面向OCR开发者的积分赛事。首届社区常规赛与《动手学OCR · 十讲》课程联合推广,课程详情可参考[链接](https://aistudio.baidu.com/aistudio/course/introduce/25207),课程作业说明可参考[链接]()
- +
+## 零代码体验 -- 代码体验:从[快速安装](./doc/doc_ch/quickstart.md) 开始 +- 在线网站体验:超轻量PP-OCR mobile模型体验地址:https://www.paddlepaddle.org.cn/hub/scene/ocr - -## PP-OCR系列模型列表(更新中) +- 移动端:[安装包DEMO下载地址](https://ai.baidu.com/easyedge/app/openSource?from=paddlelite)(基于EasyEdge和Paddle-Lite, 支持iOS和Android系统) -| 模型简介 | 模型名称 |推荐场景 | 检测模型 | 方向分类器 | 识别模型 | -| ------------ | --------------- | ----------------|---- | ---------- | -------- | -| 中英文超轻量PP-OCRv2模型(13.0M) | ch_PP-OCRv2_xx |移动端&服务器端|[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar)| [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_train.tar)| -| 中英文超轻量PP-OCR mobile模型(9.4M) | ch_ppocr_mobile_v2.0_xx |移动端&服务器端|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) | -| 中英文通用PP-OCR server模型(143.4M) |ch_ppocr_server_v2.0_xx|服务器端 |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) | - -更多模型下载(包括多语言),可以参考[PP-OCR 系列模型下载](./doc/doc_ch/models_list.md) ## 文档教程 - [运行环境准备](./doc/doc_ch/environment.md) @@ -124,31 +100,31 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力 - [垂类多语言OCR数据集](./doc/doc_ch/vertical_and_multilingual_datasets.md) - [效果展示](#效果展示) - FAQ - - [【精选】OCR精选10个问题](./doc/doc_ch/FAQ.md) - - [【理论篇】OCR通用50个问题](./doc/doc_ch/FAQ.md) - - [【实战篇】PaddleOCR实战183个问题](./doc/doc_ch/FAQ.md) -- [技术交流群](#欢迎加入PaddleOCR技术交流群) + - [通用问题](./doc/doc_ch/FAQ.md) + - [PaddleOCR实战问题](./doc/doc_ch/FAQ.md) - [参考文献](./doc/doc_ch/reference.md) - [许可证书](#许可证书) -- [贡献代码](#贡献代码) - [代码组织结构](./doc/doc_ch/tree.md) - ## PP-OCRv2 Pipeline
- [1] PP-OCR是一个实用的超轻量OCR系统。主要由DB文本检测、检测框矫正和CRNN文本识别三部分组成。该系统从骨干网络选择和调整、预测头部的设计、数据增强、学习率变换策略、正则化参数选择、预训练模型使用以及模型自动裁剪量化8个方面,采用19个有效策略,对各个模块的模型进行效果调优和瘦身(如绿框所示),最终得到整体大小为3.5M的超轻量中英文OCR和2.8M的英文数字OCR。更多细节请参考PP-OCR技术方案 https://arxiv.org/abs/2009.09941 -[2] PP-OCRv2在PP-OCR的基础上,进一步在5个方面重点优化,检测模型采用CML协同互学习知识蒸馏策略和CopyPaste数据增广策略;识别模型采用LCNet轻量级骨干网络、UDML 改进知识蒸馏策略和Enhanced CTC loss损失函数改进(如上图红框所示),进一步在推理速度和预测效果上取得明显提升。更多细节请参考PP-OCR技术方案(arxiv链接生成中)。 - +[2] PP-OCRv2在PP-OCR的基础上,进一步在5个方面重点优化,检测模型采用CML协同互学习知识蒸馏策略和CopyPaste数据增广策略;识别模型采用LCNet轻量级骨干网络、UDML 改进知识蒸馏策略和Enhanced CTC loss损失函数改进(如上图红框所示),进一步在推理速度和预测效果上取得明显提升。更多细节请参考PP-OCRv2[技术报告](https://arxiv.org/abs/2109.03144)。 + ## 效果展示 [more](./doc/doc_ch/visualization.md) - 中文模型 + +
+ + +
@@ -164,24 +140,18 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力
+ + +## 最新社区贡献 + +- 基于PaddleOCR的社区项目: [FastOCRLabel](https://gitee.com/BaoJianQiang/FastOCRLabel):完整的C#版本标注工具 (@ [包建强](https://gitee.com/BaoJianQiang) ) +- 为PaddleOCR新增功能:非常感谢 [Evezerest](https://github.com/Evezerest), [ninetailskim](https://github.com/ninetailskim), [edencfc](https://github.com/edencfc), [BeyondYourself](https://github.com/BeyondYourself), [1084667371](https://github.com/1084667371) 贡献了[PPOCRLabel](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/PPOCRLabel/README_ch.md) 的完整代码。 +- 代码与文档优化:非常感谢 [BeyondYourself](https://github.com/BeyondYourself) 给PaddleOCR提了很多非常棒的建议,并简化了PaddleOCR的部分代码风格。 +- 多语言语料:非常感谢 [Mejans](https://github.com/Mejans) 给PaddleOCR增加新语言奥克西坦语Occitan的字典和语料([#954](https://github.com/PaddlePaddle/PaddleOCR/pull/954))。 +完整社区贡献列表可查看[社区贡献文档](./doc/doc_ch/thirdparty.md) + ## 许可证书 本项目的发布受Apache 2.0 license许可认证。 - - -## 贡献代码 -我们非常欢迎你为PaddleOCR贡献代码,也十分感谢你的反馈。 - - -- 非常感谢 [Khanh Tran](https://github.com/xxxpsyduck) 和 [Karl Horky](https://github.com/karlhorky) 贡献修改英文文档 -- 非常感谢 [zhangxin](https://github.com/ZhangXinNan)([Blog](https://blog.csdn.net/sdlypyzq)) 贡献新的可视化方式、添加.gitignore、处理手动设置PYTHONPATH环境变量的问题 -- 非常感谢 [lyl120117](https://github.com/lyl120117) 贡献打印网络结构的代码 -- 非常感谢 [xiangyubo](https://github.com/xiangyubo) 贡献手写中文OCR数据集 -- 非常感谢 [authorfu](https://github.com/authorfu) 贡献Android和[xiadeye](https://github.com/xiadeye) 贡献IOS的demo代码 -- 非常感谢 [BeyondYourself](https://github.com/BeyondYourself) 给PaddleOCR提了很多非常棒的建议,并简化了PaddleOCR的部分代码风格。 -- 非常感谢 [tangmq](https://gitee.com/tangmq) 给PaddleOCR增加Docker化部署服务,支持快速发布可调用的Restful API服务。 -- 非常感谢 [lijinhan](https://github.com/lijinhan) 给PaddleOCR增加java SpringBoot 调用OCR Hubserving接口完成对OCR服务化部署的使用。 -- 非常感谢 [Mejans](https://github.com/Mejans) 给PaddleOCR增加新语言奥克西坦语Occitan的字典和语料。 -- 非常感谢 [Evezerest](https://github.com/Evezerest), [ninetailskim](https://github.com/ninetailskim), [edencfc](https://github.com/edencfc), [BeyondYourself](https://github.com/BeyondYourself), [1084667371](https://github.com/1084667371) 贡献了PPOCRLabel的完整代码。 -- GitLab