未验证 提交 b2f88313 编写于 作者: M MissPenguin 提交者: GitHub

Merge pull request #2418 from JetHong/pgnet-readme

add pgnet.md
......@@ -2,12 +2,10 @@
- [一、简介](#简介)
- [二、环境配置](#环境配置)
- [三、快速使用](#快速使用)
- [四、快速训练](#开始训练)
- [五、预测推理](#预测推理)
- [四、模型训练、评估、推理](#快速训练)
<a name="简介"></a>
##简介
## 一、简介
OCR算法可以分为两阶段算法和端对端的算法。二阶段OCR算法一般分为两个部分,文本检测和文本识别算法,文件检测算法从图像中得到文本行的检测框,然后识别算法去识别文本框中的内容。而端对端OCR算法可以在一个算法中完成文字检测和文字识别,其基本思想是设计一个同时具有检测单元和识别模块的模型,共享其中两者的CNN特征,并联合训练。由于一个算法即可完成文字识别,端对端模型更小,速度更快。
### PGNet算法介绍
......@@ -27,13 +25,11 @@ PGNet算法细节详见[论文](https://www.aaai.org/AAAI21Papers/AAAI-2885.Wang
![](../imgs_results/e2e_res_img295_pgnet.png)
<a name="环境配置"></a>
##环境配置
## 二、环境配置
请先参考[快速安装](./installation.md)配置PaddleOCR运行环境。
*注意:也可以通过 whl 包安装使用PaddleOCR,具体参考[Paddleocr Package使用说明](./whl.md)。*
<a name="快速使用"></a>
##快速使用
## 三、快速使用
### inference模型下载
本节以训练好的端到端模型为例,快速使用模型预测,首先下载训练好的端到端inference模型[下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/e2e_server_pgnetA_infer.tar)
```
......@@ -61,20 +57,25 @@ python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/im
# 如果想使用CPU进行预测,需设置use_gpu参数为False
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e/" --e2e_pgnet_polygon=True --use_gpu=False
```
<a name="开始训练"></a>
##开始训练
### 可视化结果
可视化文本检测结果默认保存到./inference_results文件夹里面,结果文件的名称前缀为'e2e_res'。结果示例如下:
![](../imgs_results/e2e_res_img623_pgnet.jpg)
<a name="快速训练"></a>
## 四、模型训练、评估、推理
本节以totaltext数据集为例,介绍PaddleOCR中端到端模型的训练、评估与测试。
###数据形式为icdar, 十六点标注数据
解压数据集和下载标注文件后,PaddleOCR/train_data/total_text/train/ 有两个文件夹,分别是:
### 准备数据
下载解压[totaltext](https://github.com/cs-chan/Total-Text-Dataset/blob/master/Dataset/README.md)数据集到PaddleOCR/train_data/目录,数据集组织结构:
```
/PaddleOCR/train_data/total_text/train/
|- rgb/ total_text数据集的训练数据
|- rgb/ # total_text数据集的训练数据
|- gt_0.png
| ...
|- total_text.txt total_text数据集的训练标注
|- total_text.txt # total_text数据集的训练标注
```
提供的标注文件格式如下,中间用"\t"分隔:
total_text.txt标注文件格式如下,文件名和标注信息中间用"\t"分隔:
```
" 图像文件名 json.dumps编码的图像标注信息"
rgb/gt_0.png [{"transcription": "EST", "points": [[1004.0,689.0],[1019.0,698.0],[1034.0,708.0],[1049.0,718.0],[1064.0,728.0],[1079.0,738.0],[1095.0,748.0],[1094.0,774.0],[1079.0,765.0],[1065.0,756.0],[1050.0,747.0],[1036.0,738.0],[1021.0,729.0],[1007.0,721.0]]}, {...}]
......@@ -83,22 +84,19 @@ json.dumps编码前的图像标注信息是包含多个字典的list,字典中
`transcription` 表示当前文本框的文字,**当其内容为“###”时,表示该文本框无效,在训练时会跳过。**
如果您想在其他数据集上训练,可以按照上述形式构建标注文件。
### 快速启动训练
### 启动训练
模型训练一般分两步骤进行,第一步可以选择用合成数据训练,第二步加载第一步训练好的模型训练,这边我们提供了第一步训练好的模型,可以直接加载,从第二步开始训练
[下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/train_step1.tar)
PGNet训练分为两个步骤:step1: 在合成数据上训练,得到预训练模型,此时模型精度依然较低;step2: 加载预训练模型,在totaltext数据集上训练;为快速训练,我们直接提供了step1的预训练模型。
```shell
cd PaddleOCR/
下载ResNet50_vd的动态图预训练模型
下载step1 预训练模型
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/train_step1.tar
可以得到以下的文件格式
./pretrain_models/train_step1/
└─ best_accuracy.pdopt
└─ best_accuracy.states
└─ best_accuracy.pdparams
```
*如果您安装的是cpu版本,请将配置文件中的 `use_gpu` 字段修改为false*
```shell
......@@ -117,7 +115,6 @@ python3 tools/train.py -c configs/e2e/e2e_r50_vd_pg.yml -o Optimizer.base_lr=0.0
```
#### 断点训练
如果训练程序中断,如果希望加载训练中断的模型从而恢复训练,可以通过指定Global.checkpoints指定要加载的模型路径:
```shell
python3 tools/train.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.checkpoints=./your/trained/model
......@@ -125,9 +122,6 @@ python3 tools/train.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.checkpoints=./
**注意**`Global.checkpoints`的优先级高于`Global.pretrain_weights`的优先级,即同时指定两个参数时,优先加载`Global.checkpoints`指定的模型,如果`Global.checkpoints`指定的模型路径有误,会加载`Global.pretrain_weights`指定的模型。
<a name="预测推理"></a>
## 预测推理
PaddleOCR计算三个OCR端到端相关的指标,分别是:Precision、Recall、Hmean。
运行如下代码,根据配置文件`e2e_r50_vd_pg.yml``save_res_path`指定的测试集检测结果文件,计算评估指标。
......@@ -138,7 +132,7 @@ PaddleOCR计算三个OCR端到端相关的指标,分别是:Precision、Recal
python3 tools/eval.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.checkpoints="{path/to/weights}/best_accuracy"
```
### 测试端到端效果
### 模型预测
测试单张图像的端到端识别效果
```shell
python3 tools/infer_e2e.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy" Global.load_static_weights=false
......@@ -149,8 +143,8 @@ python3 tools/infer_e2e.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.infer_img=
python3 tools/infer_e2e.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.infer_img="./doc/imgs_en/" Global.pretrained_model="./output/det_db/best_accuracy" Global.load_static_weights=false
```
###转为推理模型
### (1). 四边形文本检测模型(ICDAR2015)
### 预测推理
#### (1).四边形文本检测模型(ICDAR2015)
首先将PGNet端到端训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,以英文数据集训练的模型为例[模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/en_server_pgnetA.tar) ,可以使用如下命令进行转换:
```
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/en_server_pgnetA.tar && tar xf en_server_pgnetA.tar
......@@ -164,7 +158,7 @@ python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/im
![](../imgs_results/e2e_res_img_10_pgnet.jpg)
### (2). 弯曲文本检测模型(Total-Text)
#### (2).弯曲文本检测模型(Total-Text)
对于弯曲文本样例
**PGNet端到端模型推理,需要设置参数`--e2e_algorithm="PGNet"`,同时,还需要增加参数`--e2e_pgnet_polygon=True`,**可以执行如下命令:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册