提交 a4b0241a 编写于 作者: W WenmuZhou

use paddlepaddle license

上级 835e7178
# -*- coding: utf-8 -*- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
# @Time : 3/29/19 11:03 AM #
# @Author : zhoujun # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle import paddle
from paddle import nn from paddle import nn
from paddle.nn import functional as F from paddle.nn import functional as F
...@@ -9,7 +20,12 @@ from ppocr.utils.iou import iou ...@@ -9,7 +20,12 @@ from ppocr.utils.iou import iou
class PSELoss(nn.Layer): class PSELoss(nn.Layer):
def __init__(self, alpha, ohem_ratio=3, kernel_sample_mask='pred', reduction='sum', **kwargs): def __init__(self,
alpha,
ohem_ratio=3,
kernel_sample_mask='pred',
reduction='sum',
**kwargs):
"""Implement PSE Loss. """Implement PSE Loss.
""" """
super(PSELoss, self).__init__() super(PSELoss, self).__init__()
...@@ -31,32 +47,32 @@ class PSELoss(nn.Layer): ...@@ -31,32 +47,32 @@ class PSELoss(nn.Layer):
selected_masks = self.ohem_batch(texts, gt_texts, training_masks) selected_masks = self.ohem_batch(texts, gt_texts, training_masks)
loss_text = self.dice_loss(texts, gt_texts, selected_masks) loss_text = self.dice_loss(texts, gt_texts, selected_masks)
iou_text = iou((texts > 0).astype('int64'), gt_texts, training_masks, reduce=False) iou_text = iou((texts > 0).astype('int64'),
losses = dict( gt_texts,
loss_text=loss_text, training_masks,
iou_text=iou_text reduce=False)
) losses = dict(loss_text=loss_text, iou_text=iou_text)
# kernel loss # kernel loss
loss_kernels = [] loss_kernels = []
if self.kernel_sample_mask == 'gt': if self.kernel_sample_mask == 'gt':
selected_masks = gt_texts * training_masks selected_masks = gt_texts * training_masks
elif self.kernel_sample_mask == 'pred': elif self.kernel_sample_mask == 'pred':
selected_masks = (F.sigmoid(texts) > 0.5).astype('float32') * training_masks selected_masks = (
F.sigmoid(texts) > 0.5).astype('float32') * training_masks
for i in range(kernels.shape[1]): for i in range(kernels.shape[1]):
kernel_i = kernels[:, i, :, :] kernel_i = kernels[:, i, :, :]
gt_kernel_i = gt_kernels[:, i, :, :] gt_kernel_i = gt_kernels[:, i, :, :]
loss_kernel_i = self.dice_loss(kernel_i, gt_kernel_i, selected_masks) loss_kernel_i = self.dice_loss(kernel_i, gt_kernel_i,
selected_masks)
loss_kernels.append(loss_kernel_i) loss_kernels.append(loss_kernel_i)
loss_kernels = paddle.mean(paddle.stack(loss_kernels, axis=1), axis=1) loss_kernels = paddle.mean(paddle.stack(loss_kernels, axis=1), axis=1)
iou_kernel = iou( iou_kernel = iou((kernels[:, -1, :, :] > 0).astype('int64'),
(kernels[:, -1, :, :] > 0).astype('int64'), gt_kernels[:, -1, :, :], training_masks * gt_texts, gt_kernels[:, -1, :, :],
training_masks * gt_texts,
reduce=False) reduce=False)
losses.update(dict( losses.update(dict(loss_kernels=loss_kernels, iou_kernel=iou_kernel))
loss_kernels=loss_kernels,
iou_kernel=iou_kernel
))
loss = self.alpha * loss_text + (1 - self.alpha) * loss_kernels loss = self.alpha * loss_text + (1 - self.alpha) * loss_kernels
losses['loss'] = loss losses['loss'] = loss
if self.reduction == 'sum': if self.reduction == 'sum':
...@@ -83,12 +99,15 @@ class PSELoss(nn.Layer): ...@@ -83,12 +99,15 @@ class PSELoss(nn.Layer):
def ohem_single(self, score, gt_text, training_mask, ohem_ratio=3): def ohem_single(self, score, gt_text, training_mask, ohem_ratio=3):
pos_num = int(paddle.sum((gt_text > 0.5).astype('float32'))) - int( pos_num = int(paddle.sum((gt_text > 0.5).astype('float32'))) - int(
paddle.sum(paddle.logical_and((gt_text > 0.5), (training_mask <= 0.5)).astype('float32'))) paddle.sum(
paddle.logical_and((gt_text > 0.5), (training_mask <= 0.5))
.astype('float32')))
if pos_num == 0: if pos_num == 0:
# selected_mask = gt_text.copy() * 0 # may be not good # selected_mask = gt_text.copy() * 0 # may be not good
selected_mask = training_mask selected_mask = training_mask
selected_mask = selected_mask.reshape([1, selected_mask.shape[0], selected_mask.shape[1]]).astype( selected_mask = selected_mask.reshape(
[1, selected_mask.shape[0], selected_mask.shape[1]]).astype(
'float32') 'float32')
return selected_mask return selected_mask
...@@ -97,23 +116,29 @@ class PSELoss(nn.Layer): ...@@ -97,23 +116,29 @@ class PSELoss(nn.Layer):
if neg_num == 0: if neg_num == 0:
selected_mask = training_mask selected_mask = training_mask
selected_mask = selected_mask.view(1, selected_mask.shape[0], selected_mask.shape[1]).astype('float32') selected_mask = selected_mask.view(
1, selected_mask.shape[0],
selected_mask.shape[1]).astype('float32')
return selected_mask return selected_mask
neg_score = paddle.masked_select(score, gt_text <= 0.5) neg_score = paddle.masked_select(score, gt_text <= 0.5)
neg_score_sorted = paddle.sort(-neg_score) neg_score_sorted = paddle.sort(-neg_score)
threshold = -neg_score_sorted[neg_num - 1] threshold = -neg_score_sorted[neg_num - 1]
selected_mask = paddle.logical_and(paddle.logical_or((score >= threshold), (gt_text > 0.5)), selected_mask = paddle.logical_and(
paddle.logical_or((score >= threshold), (gt_text > 0.5)),
(training_mask > 0.5)) (training_mask > 0.5))
selected_mask = selected_mask.reshape([1, selected_mask.shape[0], selected_mask.shape[1]]).astype('float32') selected_mask = selected_mask.reshape(
[1, selected_mask.shape[0], selected_mask.shape[1]]).astype(
'float32')
return selected_mask return selected_mask
def ohem_batch(self, scores, gt_texts, training_masks, ohem_ratio=3): def ohem_batch(self, scores, gt_texts, training_masks, ohem_ratio=3):
selected_masks = [] selected_masks = []
for i in range(scores.shape[0]): for i in range(scores.shape[0]):
selected_masks.append( selected_masks.append(
self.ohem_single(scores[i, :, :], gt_texts[i, :, :], training_masks[i, :, :], ohem_ratio)) self.ohem_single(scores[i, :, :], gt_texts[i, :, :],
training_masks[i, :, :], ohem_ratio))
selected_masks = paddle.concat(selected_masks, 0).astype('float32') selected_masks = paddle.concat(selected_masks, 0).astype('float32')
return selected_masks return selected_masks
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册