提交 a2cdabd0 编写于 作者: L LDOUBLEV

fix det cml + pact + distribute training bug

上级 6dff6d97
......@@ -161,12 +161,6 @@ def main(config, device, logger, vdl_writer):
if config["Global"]["pretrained_model"] is not None:
pre_best_model_dict = load_model(config, model)
quanter = QAT(config=quant_config, act_preprocess=PACT)
quanter.quantize(model)
if config['Global']['distributed']:
model = paddle.DataParallel(model)
# build loss
loss_class = build_loss(config['Loss'])
......@@ -181,6 +175,12 @@ def main(config, device, logger, vdl_writer):
if config["Global"]["checkpoints"] is not None:
pre_best_model_dict = load_model(config, model, optimizer)
quanter = QAT(config=quant_config, act_preprocess=PACT)
quanter.quantize(model)
if config['Global']['distributed']:
model = paddle.DataParallel(model)
# build metric
eval_class = build_metric(config['Metric'])
......
......@@ -43,12 +43,15 @@ class Momentum(object):
self.grad_clip = grad_clip
def __call__(self, model):
train_params = [
param for param in model.parameters() if param.trainable is True
]
opt = optim.Momentum(
learning_rate=self.learning_rate,
momentum=self.momentum,
weight_decay=self.weight_decay,
grad_clip=self.grad_clip,
parameters=model.parameters())
parameters=train_params)
return opt
......@@ -76,6 +79,9 @@ class Adam(object):
self.lazy_mode = lazy_mode
def __call__(self, model):
train_params = [
param for param in model.parameters() if param.trainable is True
]
opt = optim.Adam(
learning_rate=self.learning_rate,
beta1=self.beta1,
......@@ -85,7 +91,7 @@ class Adam(object):
grad_clip=self.grad_clip,
name=self.name,
lazy_mode=self.lazy_mode,
parameters=model.parameters())
parameters=train_params)
return opt
......@@ -118,6 +124,9 @@ class RMSProp(object):
self.grad_clip = grad_clip
def __call__(self, model):
train_params = [
param for param in model.parameters() if param.trainable is True
]
opt = optim.RMSProp(
learning_rate=self.learning_rate,
momentum=self.momentum,
......@@ -125,7 +134,7 @@ class RMSProp(object):
epsilon=self.epsilon,
weight_decay=self.weight_decay,
grad_clip=self.grad_clip,
parameters=model.parameters())
parameters=train_params)
return opt
......@@ -149,6 +158,9 @@ class Adadelta(object):
self.name = name
def __call__(self, model):
train_params = [
param for param in model.parameters() if param.trainable is True
]
opt = optim.Adadelta(
learning_rate=self.learning_rate,
epsilon=self.epsilon,
......@@ -156,7 +168,7 @@ class Adadelta(object):
weight_decay=self.weight_decay,
grad_clip=self.grad_clip,
name=self.name,
parameters=model.parameters())
parameters=train_params)
return opt
......@@ -190,10 +202,13 @@ class AdamW(object):
self.one_dim_param_no_weight_decay = one_dim_param_no_weight_decay
def __call__(self, model):
parameters = model.parameters()
parameters = [
param for param in model.parameters() if param.trainable is True
]
self.no_weight_decay_param_name_list = [
p.name for n, p in model.named_parameters() if any(nd in n for nd in self.no_weight_decay_name_list)
p.name for n, p in model.named_parameters()
if any(nd in n for nd in self.no_weight_decay_name_list)
]
if self.one_dim_param_no_weight_decay:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册