diff --git a/__init__.py b/__init__.py index 15a9aca4da19a981b9e678e7cc93e33cf40fc81c..11436094c163db1b91f5ac38f2936a53017016c1 100644 --- a/__init__.py +++ b/__init__.py @@ -16,5 +16,6 @@ from .paddleocr import * __version__ = paddleocr.VERSION __all__ = [ 'PaddleOCR', 'PPStructure', 'draw_ocr', 'draw_structure_result', - 'save_structure_res', 'download_with_progressbar' + 'save_structure_res', 'download_with_progressbar', 'sorted_layout_boxes', + 'convert_info_docx' ] diff --git a/deploy/hubserving/readme.md b/deploy/hubserving/readme.md index 94a570e1895dcb474e51e2b5d2b4dc9a40ee49fd..c583cc96ede437a1f65f9b1bddb69e84b7c54852 100755 --- a/deploy/hubserving/readme.md +++ b/deploy/hubserving/readme.md @@ -20,16 +20,16 @@ PaddleOCR提供2种服务部署方式: # 基于PaddleHub Serving的服务部署 -hubserving服务部署目录下包括文本检测、文本方向分类,文本识别、文本检测+文本方向分类+文本识别3阶段串联,表格识别、PP-Structure和版面分析七种服务包,请根据需求选择相应的服务包进行安装和启动。目录结构如下: +hubserving服务部署目录下包括文本检测、文本方向分类,文本识别、文本检测+文本方向分类+文本识别3阶段串联,版面分析、表格识别和PP-Structure七种服务包,请根据需求选择相应的服务包进行安装和启动。目录结构如下: ``` deploy/hubserving/ └─ ocr_cls 文本方向分类模块服务包 └─ ocr_det 文本检测模块服务包 └─ ocr_rec 文本识别模块服务包 └─ ocr_system 文本检测+文本方向分类+文本识别串联服务包 + └─ structure_layout 版面分析服务包 └─ structure_table 表格识别服务包 └─ structure_system PP-Structure服务包 - └─ structure_layout 版面分析服务包 ``` 每个服务包下包含3个文件。以2阶段串联服务包为例,目录如下: @@ -42,9 +42,9 @@ deploy/hubserving/ocr_system/ ``` ## 1. 近期更新 +* 2022.08.23 新增版面分析服务。 * 2022.05.05 新增PP-OCRv3检测和识别模型。 * 2022.03.30 新增PP-Structure和表格识别两种服务。 -* 2022.08.23 新增版面分析服务。 ## 2. 快速启动服务 以下步骤以检测+识别2阶段串联服务为例,如果只需要检测服务或识别服务,替换相应文件路径即可。 diff --git a/deploy/hubserving/readme_en.md b/deploy/hubserving/readme_en.md index dd0a74e63fe0b138c01d158e577c5c2a0244e94a..f09fe46417c7567305e5ce05a14be74d33450c31 100755 --- a/deploy/hubserving/readme_en.md +++ b/deploy/hubserving/readme_en.md @@ -20,16 +20,16 @@ PaddleOCR provides 2 service deployment methods: # Service deployment based on PaddleHub Serving -The hubserving service deployment directory includes seven service packages: text detection, text angle class, text recognition, text detection+text angle class+text recognition three-stage series connection, table recognition, PP-Structure and layout analysis. Please select the corresponding service package to install and start service according to your needs. The directory is as follows: +The hubserving service deployment directory includes seven service packages: text detection, text angle class, text recognition, text detection+text angle class+text recognition three-stage series connection, layout analysis, table recognition and PP-Structure. Please select the corresponding service package to install and start service according to your needs. The directory is as follows: ``` deploy/hubserving/ └─ ocr_det text detection module service package └─ ocr_cls text angle class module service package └─ ocr_rec text recognition module service package └─ ocr_system text detection+text angle class+text recognition three-stage series connection service package + └─ structure_layout layout analysis service package └─ structure_table table recognition service package └─ structure_system PP-Structure service package - └─ structure_layout layout analysis service package ``` Each service pack contains 3 files. Take the 2-stage series connection service package as an example, the directory is as follows: diff --git a/paddleocr.py b/paddleocr.py index 2adddfbe8293a29cc1f292755f70f0fa03f82c1d..bada383612725608d19596ea6f331758a8aba53c 100644 --- a/paddleocr.py +++ b/paddleocr.py @@ -562,7 +562,7 @@ class PPStructure(StructureSystem): params.table_model_dir, os.path.join(BASE_DIR, 'whl', 'table'), table_model_config['url']) layout_model_config = get_model_config( - 'STRUCTURE', params.structure_version, 'layout', 'ch') + 'STRUCTURE', params.structure_version, 'layout', lang) params.layout_model_dir, layout_url = confirm_model_dir_url( params.layout_model_dir, os.path.join(BASE_DIR, 'whl', 'layout'), layout_model_config['url']) @@ -584,7 +584,7 @@ class PPStructure(StructureSystem): logger.debug(params) super().__init__(params) - def __call__(self, img, return_ocr_result_in_table=False): + def __call__(self, img, return_ocr_result_in_table=False, img_idx=0): if isinstance(img, str): # download net image if img.startswith('http'): @@ -602,7 +602,8 @@ class PPStructure(StructureSystem): if isinstance(img, np.ndarray) and len(img.shape) == 2: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) - res, _ = super().__call__(img, return_ocr_result_in_table) + res, _ = super().__call__( + img, return_ocr_result_in_table, img_idx=img_idx) return res @@ -637,25 +638,54 @@ def main(): for line in result: logger.info(line) elif args.type == 'structure': - result = engine(img_path) - save_structure_res(result, args.output, img_name) + img, flag_gif, flag_pdf = check_and_read(img_path) + if not flag_gif and not flag_pdf: + img = cv2.imread(img_path) - if args.recovery: - try: - from ppstructure.recovery.recovery_to_doc import sorted_layout_boxes, convert_info_docx - img = cv2.imread(img_path) + if not flag_pdf: + if img is None: + logger.error("error in loading image:{}".format(image_file)) + continue + img_paths = [[img_path, img]] + else: + img_paths = [] + for index, pdf_img in enumerate(img): + os.makedirs( + os.path.join(args.output, img_name), exist_ok=True) + pdf_img_path = os.path.join(args.output, img_name, img_name + + '_' + str(index) + '.jpg') + cv2.imwrite(pdf_img_path, pdf_img) + img_paths.append([pdf_img_path, pdf_img]) + + all_res = [] + for index, (new_img_path, img) in enumerate(img_paths): + logger.info('processing {}/{} page:'.format(index + 1, + len(img_paths))) + new_img_name = os.path.basename(new_img_path).split('.')[0] + result = engine(new_img_path, img_idx=index) + save_structure_res(result, args.output, img_name, index) + + if args.recovery and result != []: + from copy import deepcopy + from ppstructure.recovery.recovery_to_doc import sorted_layout_boxes h, w, _ = img.shape - res = sorted_layout_boxes(result, w) - convert_info_docx(img, res, args.output, img_name, + result_cp = deepcopy(result) + result_sorted = sorted_layout_boxes(result_cp, w) + all_res += result_sorted + + for item in result: + item.pop('img') + item.pop('res') + logger.info(item) + logger.info('result save to {}'.format(args.output)) + + if args.recovery and all_res != []: + try: + from ppstructure.recovery.recovery_to_doc import convert_info_docx + convert_info_docx(img, all_res, args.output, img_name, args.save_pdf) except Exception as ex: logger.error( "error in layout recovery image:{}, err msg: {}".format( img_name, ex)) continue - - for item in result: - item.pop('img') - item.pop('res') - logger.info(item) - logger.info('result save to {}'.format(args.output)) diff --git a/ppstructure/docs/quickstart.md b/ppstructure/docs/quickstart.md index 52331abef78c27437ecb625b77d466bd1f62bfb5..b9367cab327a2f6232e34431c12532db03c75389 100644 --- a/ppstructure/docs/quickstart.md +++ b/ppstructure/docs/quickstart.md @@ -102,6 +102,8 @@ paddleocr --image_dir=ppstructure/docs/table/table.jpg --type=structure --layout paddleocr --image_dir=ppstructure/docs/table/1.png --type=structure --recovery=true # 英文测试图 paddleocr --image_dir=ppstructure/docs/table/1.png --type=structure --recovery=true --lang='en' +# pdf测试文件 +paddleocr --image_dir=ppstructure/recovery/UnrealText.pdf --type=structure --recovery=true --lang='en' ``` diff --git a/ppstructure/docs/quickstart_en.md b/ppstructure/docs/quickstart_en.md index 83a852a33519cfaef7f5da7929fd3e33140b5c19..52f4e34f8fd500b2de62f63246262890764b6e9a 100644 --- a/ppstructure/docs/quickstart_en.md +++ b/ppstructure/docs/quickstart_en.md @@ -85,6 +85,8 @@ Please refer to: [Key Information Extraction](../kie/README.md) . paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure --recovery=true # English pic paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure --recovery=true --lang='en' +# pdf file +paddleocr --image_dir=ppstructure/recovery/UnrealText.pdf --type=structure --recovery=true --lang='en' ``` diff --git a/ppstructure/docs/recovery/UnrealText.pdf b/ppstructure/docs/recovery/UnrealText.pdf new file mode 100644 index 0000000000000000000000000000000000000000..0b5cf961af4ebf09cb96fc3f09fb9c19abec68f1 Binary files /dev/null and b/ppstructure/docs/recovery/UnrealText.pdf differ diff --git a/ppstructure/docs/recovery/recovery_ch.jpg b/ppstructure/docs/recovery/recovery_ch.jpg new file mode 100644 index 0000000000000000000000000000000000000000..df5a5063f036053673041b92a01f288b3e1d246b Binary files /dev/null and b/ppstructure/docs/recovery/recovery_ch.jpg differ diff --git a/ppstructure/layout/README_ch.md b/ppstructure/layout/README_ch.md index d5598fc1a896ea4cfcc94619e1744b9b7ec288b3..f8d1978e25d7fb17cfd3fcb363b4ce981e19c8dc 100644 --- a/ppstructure/layout/README_ch.md +++ b/ppstructure/layout/README_ch.md @@ -160,11 +160,13 @@ json文件包含所有图像的标注,数据以字典嵌套的方式存放, ``` mkdir pretrained_model cd pretrained_model -# 下载PubLayNet预训练模型 -wget https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_layout.pdparams +# 下载PubLayNet预训练模型(直接体验模型评估、预测、动转静) +wget https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout.pdparams +# 下载PubLaynet推理模型(直接体验模型推理) +wget https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_infer.tar ``` -下载更多[版面分析模型](../docs/models_list.md)(中文CDLA数据集预训练模型、表格预训练模型) +如果测试图片为中文,可以下载中文CDLA数据集的预训练模型,识别10类文档区域:Table、Figure、Figure caption、Table、Table caption、Header、Footer、Reference、Equation,在[版面分析模型](../docs/models_list.md)中下载`picodet_lcnet_x1_0_fgd_layout_cdla`模型的训练模型和推理模型。如果只检测图片中的表格区域,可以下载表格数据集的预训练模型,在[版面分析模型](../docs/models_list.md)中下载`picodet_lcnet_x1_0_fgd_layout_table`模型的训练模型和推理模型。 ### 4.1. 启动训练 @@ -216,14 +218,14 @@ TestDataset: # 单卡训练 export CUDA_VISIBLE_DEVICES=0 python3 tools/train.py \ - -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \ - --eval + -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \ + --eval # 多卡训练,通过--gpus参数指定卡号 export CUDA_VISIBLE_DEVICES=0,1,2,3 python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py \ - -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \ - --eval + -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \ + --eval ``` **注意:**如果训练时显存out memory,将TrainReader中batch_size调小,同时LearningRate中base_lr等比例减小。发布的config均由8卡训练得到,如果改变GPU卡数为1,那么base_lr需要减小8倍。 @@ -252,9 +254,9 @@ PaddleDetection支持了基于FGD([Focal and Global Knowledge Distillation for D # 单卡训练 export CUDA_VISIBLE_DEVICES=0 python3 tools/train.py \ - -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \ - --slim_config configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x2_5_layout.yml \ - --eval + -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \ + --slim_config configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x2_5_layout.yml \ + --eval ``` - `-c`: 指定模型配置文件。 @@ -269,8 +271,8 @@ python3 tools/train.py \ ```bash # GPU 评估, weights 为待测权重 python3 tools/eval.py \ - -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \ - -o weights=./output/picodet_lcnet_x1_0_layout/best_model + -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \ + -o weights=./output/picodet_lcnet_x1_0_layout/best_model ``` 会输出以下信息,打印出mAP、AP0.5等信息。 @@ -292,13 +294,13 @@ python3 tools/eval.py \ [08/15 07:07:09] ppdet.engine INFO: Best test bbox ap is 0.935. ``` -使用FGD蒸馏模型进行评估: +若使用**提供的预训练模型进行评估**,或使用**FGD蒸馏训练的模型**,更换`weights`模型路径,执行如下命令进行评估: ``` python3 tools/eval.py \ - -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \ - --slim_config configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x2_5_layout.yml \ - -o weights=output/picodet_lcnet_x2_5_layout/best_model + -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \ + --slim_config configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x2_5_layout.yml \ + -o weights=output/picodet_lcnet_x2_5_layout/best_model ``` - `-c`: 指定模型配置文件。 @@ -325,18 +327,16 @@ python3 tools/infer.py \ - `--output_dir`: 指定可视化结果保存路径。 - `--draw_threshold`:指定绘制结果框的NMS阈值。 -预测图片如下所示,图片会存储在`output_dir`路径中。 - -使用FGD蒸馏模型进行测试: +若使用**提供的预训练模型进行预测**,或使用**FGD蒸馏训练的模型**,更换`weights`模型路径,执行如下命令进行预测: ``` python3 tools/infer.py \ - -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \ - --slim_config configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x2_5_layout.yml \ - -o weights='output/picodet_lcnet_x2_5_layout/best_model.pdparams' \ - --infer_img='docs/images/layout.jpg' \ - --output_dir=output_dir/ \ - --draw_threshold=0.5 + -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \ + --slim_config configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x2_5_layout.yml \ + -o weights='output/picodet_lcnet_x2_5_layout/best_model.pdparams' \ + --infer_img='docs/images/layout.jpg' \ + --output_dir=output_dir/ \ + --draw_threshold=0.5 ``` @@ -351,9 +351,9 @@ inference 模型(`paddle.jit.save`保存的模型) 一般是模型训练, ```bash python3 tools/export_model.py \ - -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \ - -o weights=output/picodet_lcnet_x1_0_layout/best_model \ - --output_dir=output_inference/ + -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \ + -o weights=output/picodet_lcnet_x1_0_layout/best_model \ + --output_dir=output_inference/ ``` * 如无需导出后处理,请指定:`-o export.benchmark=True`(如果-o已出现过,此处删掉-o) @@ -368,27 +368,27 @@ output_inference/picodet_lcnet_x1_0_layout/ └── model.pdmodel # inference模型的模型结构文件 ``` -FGD蒸馏模型转inference模型步骤如下: +若使用**提供的预训练模型转Inference模型**,或使用**FGD蒸馏训练的模型**,更换`weights`模型路径,模型转inference模型步骤如下: ```bash python3 tools/export_model.py \ - -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \ - --slim_config configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x2_5_layout.yml \ - -o weights=./output/picodet_lcnet_x2_5_layout/best_model \ - --output_dir=output_inference/ + -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \ + --slim_config configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x2_5_layout.yml \ + -o weights=./output/picodet_lcnet_x2_5_layout/best_model \ + --output_dir=output_inference/ ``` ### 6.2 模型推理 -版面恢复任务进行推理,可以执行如下命令: +若使用**提供的推理训练模型推理**,或使用**FGD蒸馏训练的模型**,更换`model_dir`推理模型路径,执行如下命令进行推理: ```bash python3 deploy/python/infer.py \ - --model_dir=output_inference/picodet_lcnet_x1_0_layout/ \ - --image_file=docs/images/layout.jpg \ - --device=CPU + --model_dir=output_inference/picodet_lcnet_x1_0_layout/ \ + --image_file=docs/images/layout.jpg \ + --device=CPU ``` - --device:指定GPU、CPU设备 diff --git a/ppstructure/predict_system.py b/ppstructure/predict_system.py index da6b0770bba3ca8e01476ed433b7a48a85ba887c..71147d3af8ec666d368234270dcb0d16aaf91938 100644 --- a/ppstructure/predict_system.py +++ b/ppstructure/predict_system.py @@ -227,65 +227,39 @@ def main(args): if img is None: logger.error("error in loading image:{}".format(image_file)) continue - res, time_dict = structure_sys(img) + imgs = [img] + else: + imgs = img - if structure_sys.mode == 'structure': - save_structure_res(res, save_folder, img_name) + all_res = [] + for index, img in enumerate(imgs): + res, time_dict = structure_sys(img, img_idx=index) + if structure_sys.mode == 'structure' and res != []: + save_structure_res(res, save_folder, img_name, index) draw_img = draw_structure_result(img, res, args.vis_font_path) - img_save_path = os.path.join(save_folder, img_name, 'show.jpg') + img_save_path = os.path.join(save_folder, img_name, + 'show_{}.jpg'.format(index)) elif structure_sys.mode == 'kie': raise NotImplementedError # draw_img = draw_ser_results(img, res, args.vis_font_path) # img_save_path = os.path.join(save_folder, img_name + '.jpg') - cv2.imwrite(img_save_path, draw_img) - logger.info('result save to {}'.format(img_save_path)) - if args.recovery: - try: - from ppstructure.recovery.recovery_to_doc import sorted_layout_boxes, convert_info_docx - h, w, _ = img.shape - res = sorted_layout_boxes(res, w) - convert_info_docx(img, res, save_folder, img_name, - args.save_pdf) - except Exception as ex: - logger.error( - "error in layout recovery image:{}, err msg: {}".format( - image_file, ex)) - continue - else: - pdf_imgs = img - all_res = [] - for index, img in enumerate(pdf_imgs): - - res, time_dict = structure_sys(img, index) - if structure_sys.mode == 'structure' and res != []: - save_structure_res(res, save_folder, img_name, index) - draw_img = draw_structure_result(img, res, - args.vis_font_path) - img_save_path = os.path.join(save_folder, img_name, - 'show_{}.jpg'.format(index)) - elif structure_sys.mode == 'kie': - raise NotImplementedError - # draw_img = draw_ser_results(img, res, args.vis_font_path) - # img_save_path = os.path.join(save_folder, img_name + '.jpg') - if res != []: - cv2.imwrite(img_save_path, draw_img) - logger.info('result save to {}'.format(img_save_path)) - if args.recovery and res != []: - from ppstructure.recovery.recovery_to_doc import sorted_layout_boxes, convert_info_docx - h, w, _ = img.shape - res = sorted_layout_boxes(res, w) - all_res += res - - if args.recovery and all_res != []: - try: - convert_info_docx(img, all_res, save_folder, img_name, - args.save_pdf) - except Exception as ex: - logger.error( - "error in layout recovery image:{}, err msg: {}".format( - image_file, ex)) - continue + if res != []: + cv2.imwrite(img_save_path, draw_img) + logger.info('result save to {}'.format(img_save_path)) + if args.recovery and res != []: + from ppstructure.recovery.recovery_to_doc import sorted_layout_boxes, convert_info_docx + h, w, _ = img.shape + res = sorted_layout_boxes(res, w) + all_res += res + if args.recovery and all_res != []: + try: + convert_info_docx(img, all_res, save_folder, img_name, + args.save_pdf) + except Exception as ex: + logger.error("error in layout recovery image:{}, err msg: {}". + format(image_file, ex)) + continue logger.info("Predict time : {:.3f}s".format(time_dict['all'])) diff --git a/ppstructure/recovery/README.md b/ppstructure/recovery/README.md index 90a6a2c3c4189dc885d698e4cac2d1a24a49d1df..59aef707dd67799bb46dc18dc58f883c502c8b86 100644 --- a/ppstructure/recovery/README.md +++ b/ppstructure/recovery/README.md @@ -8,6 +8,7 @@ English | [简体中文](README_ch.md) - [3. Quick Start](#3) - [3.1 Download models](#3.1) - [3.2 Layout recovery](#3.2) + - [4. More](#4) @@ -15,13 +16,16 @@ English | [简体中文](README_ch.md) Layout recovery means that after OCR recognition, the content is still arranged like the original document pictures, and the paragraphs are output to word document in the same order. -Layout recovery combines [layout analysis](../layout/README.md)、[table recognition](../table/README.md) to better recover images, tables, titles, etc. -The following figure shows the result: +Layout recovery combines [layout analysis](../layout/README.md)、[table recognition](../table/README.md) to better recover images, tables, titles, etc. supports input files in PDF and document image formats in Chinese and English. The following figure shows the effect of restoring the layout of English and Chinese documents: