From 9372741adf2d3d3997025b2522287ea18436eb14 Mon Sep 17 00:00:00 2001 From: LDOUBLEV Date: Wed, 9 Jun 2021 14:48:56 +0800 Subject: [PATCH] return status to log_path/results.log --- test/infer.sh | 9 +++++---- test/test.sh | 11 ++++++----- 2 files changed, 11 insertions(+), 9 deletions(-) diff --git a/test/infer.sh b/test/infer.sh index 30b91df7..9db893d3 100644 --- a/test/infer.sh +++ b/test/infer.sh @@ -27,6 +27,7 @@ gpu_precision_list=$(func_parser "${lines[11]}") infer_gpu_id=$(func_parser "${lines[12]}") log_path=$(func_parser "${lines[13]}") +status_log="${log_path}/result.log" function status_check(){ @@ -103,11 +104,11 @@ for train_model in ${train_model_list[*]}; do save_log_path="${log_path}/${eval_model_name}" command="${python} tools/eval.py -c ${yml_file} -o Global.pretrained_model="${eval_model_name}/best_accuracy" Global.save_model_dir=${save_log_path}" ${python} tools/eval.py -c ${yml_file} -o Global.pretrained_model="${eval_model_name}/best_accuracy" Global.save_model_dir=${save_log_path} - status_check $? "${trainer}" "${command}" "${save_log_path}/train.log" + status_check $? "${trainer}" "${command}" "${status_log}" command="${python} tools/export_model.py -c ${yml_file} -o Global.pretrained_model="${eval_model_name}/best_accuracy" Global.save_inference_dir=${log_path}/${eval_model_name}_infer Global.save_model_dir=${save_log_path}" ${python} tools/export_model.py -c ${yml_file} -o Global.pretrained_model="${eval_model_name}/best_accuracy" Global.save_inference_dir="${log_path}/${eval_model_name}_infer" Global.save_model_dir=${save_log_path} - status_check $? "${trainer}" "${command}" "${save_log_path}/train.log" + status_check $? "${trainer}" "${command}" "${status_log}" if [ $? -eq 0 ]; then echo -e "\033[33m training of $model_name successfully!\033[0m" | tee -a ${save_log}/train.log @@ -134,7 +135,7 @@ for train_model in ${train_model_list[*]}; do save_log_path="${log_path}/${model_name}_${slim_trainer}_cpu_usemkldnn_${use_mkldnn}_cputhreads_${threads}_recbatchnum_${rec_batch_size}_infer.log" command="${python} ${inference} --enable_mkldnn=${use_mkldnn} --use_gpu=False --cpu_threads=${threads} --benchmark=True --det_model_dir=${det_model_dir} --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir} --image_dir=${img_dir} --save_log_path=${save_log_path}" ${python} ${inference} --enable_mkldnn=${use_mkldnn} --use_gpu=False --cpu_threads=${threads} --benchmark=True --det_model_dir=${det_model_dir} --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir} --image_dir=${img_dir} --save_log_path=${save_log_path} - status_check $? "${trainer}" "${command}" "${save_log_path}" + status_check $? "${trainer}" "${command}" "${status_log}" done done done @@ -149,7 +150,7 @@ for train_model in ${train_model_list[*]}; do save_log_path="${log_path}/${model_name}_${slim_trainer}_gpu_usetensorrt_${use_trt}_usefp16_${precision}_recbatchnum_${rec_batch_size}_infer.log" command="${env} ${python} ${inference} --use_gpu=True --use_tensorrt=${use_trt} --precision=${precision} --benchmark=True --det_model_dir=${log_path}/${eval_model_name}_infer --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir} --image_dir=${img_dir} --save_log_path=${save_log_path}" ${env} ${python} ${inference} --use_gpu=True --use_tensorrt=${use_trt} --precision=${precision} --benchmark=True --det_model_dir=${log_path}/${eval_model_name}_infer --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir} --image_dir=${img_dir} --save_log_path=${save_log_path} - status_check $? "${trainer}" "${command}" "${save_log_path}" + status_check $? "${trainer}" "${command}" "${status_log}" done done done diff --git a/test/test.sh b/test/test.sh index 15a10d17..fdc54095 100644 --- a/test/test.sh +++ b/test/test.sh @@ -1,6 +1,6 @@ #!/bin/bash # Usage: -# bash test/test.sh ./test/params.txt 'lite_train_infer' +# bash test/test.sh ./test/paddleocr_ci_params.txt 'lite_train_infer' FILENAME=$1 @@ -67,6 +67,7 @@ gpu_trt_list=$(func_parser "${lines[10]}") gpu_precision_list=$(func_parser "${lines[11]}") log_path=$(func_parser "${lines[13]}") +status_log="${log_path}/result.log" function status_check(){ last_status=$1 # the exit code @@ -135,11 +136,11 @@ for train_model in ${train_model_list[*]}; do save_log="${log_path}/${model_name}_${slim_trainer}_autocast_${auto_cast}_gpuid_${gpu}" command="${env} ${python} ${launch} ${trainer} -c ${yml_file} -o Global.epoch_num=${epoch} Global.eval_batch_step=${eval_batch_step} Global.auto_cast=${auto_cast} Global.pretrained_model=${pretrain} Global.save_model_dir=${save_log} Global.use_gpu=${use_gpu} Train.loader.batch_size_per_card=2" ${env} ${python} ${launch} ${trainer} -c ${yml_file} -o Global.epoch_num=${epoch} Global.eval_batch_step=${eval_batch_step} Global.auto_cast=${auto_cast} Global.pretrained_model=${pretrain} Global.save_model_dir=${save_log} Global.use_gpu=${use_gpu} Train.loader.batch_size_per_card=2 - status_check $? "${trainer}" "${command}" "${save_log}/train.log" + status_check $? "${trainer}" "${command}" "${status_log}" command="${env} ${python} ${export_model} -c ${yml_file} -o Global.pretrained_model=${save_log}/latest Global.save_inference_dir=${save_log}/export_inference/ Global.save_model_dir=${save_log}" ${env} ${python} ${export_model} -c ${yml_file} -o Global.pretrained_model=${save_log}/latest Global.save_inference_dir=${save_log}/export_inference/ Global.save_model_dir=${save_log} - status_check $? "${trainer}" "${command}" "${save_log}/train.log" + status_check $? "${trainer}" "${command}" "${status_log}" if [ "${model_name}" = "det" ]; then export rec_batch_size_list=( "1" ) @@ -160,7 +161,7 @@ for train_model in ${train_model_list[*]}; do save_log_path="${log_path}/${model_name}_${slim_trainer}_cpu_usemkldnn_${use_mkldnn}_cputhreads_${threads}_recbatchnum_${rec_batch_size}_infer.log" command="${python} ${inference} --enable_mkldnn=${use_mkldnn} --use_gpu=False --cpu_threads=${threads} --benchmark=True --det_model_dir=${save_log}/export_inference/ --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir} --image_dir=${img_dir} --save_log_path=${save_log_path}" ${python} ${inference} --enable_mkldnn=${use_mkldnn} --use_gpu=False --cpu_threads=${threads} --benchmark=True --det_model_dir=${save_log}/export_inference/ --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir} --image_dir=${img_dir} --save_log_path=${save_log_path} - status_check $? "${inference}" "${command}" "${save_log}" + status_check $? "${inference}" "${command}" "${status_log}" done done done @@ -174,7 +175,7 @@ for train_model in ${train_model_list[*]}; do save_log_path="${log_path}/${model_name}_${slim_trainer}_gpu_usetensorrt_${use_trt}_usefp16_${precision}_recbatchnum_${rec_batch_size}_infer.log" command="${env} ${python} ${inference} --use_gpu=True --use_tensorrt=${use_trt} --precision=${precision} --benchmark=True --det_model_dir=${save_log}/export_inference/ --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir} --image_dir=${img_dir} --save_log_path=${save_log_path}" ${env} ${python} ${inference} --use_gpu=True --use_tensorrt=${use_trt} --precision=${precision} --benchmark=True --det_model_dir=${save_log}/export_inference/ --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir} --image_dir=${img_dir} --save_log_path=${save_log_path} - status_check $? "${inference}" "${command}" "${save_log}" + status_check $? "${inference}" "${command}" "${status_log}" done done done -- GitLab