diff --git a/doc/doc_ch/algorithm_overview.md b/doc/doc_ch/algorithm_overview.md index c4a3b3255f7367aec672387272d47b64a02658ee..475db67935893e82928a633e66fc872e8245ebe5 100644 --- a/doc/doc_ch/algorithm_overview.md +++ b/doc/doc_ch/algorithm_overview.md @@ -17,17 +17,17 @@ PaddleOCR开源的文本检测算法列表: |模型|骨干网络|precision|recall|Hmean|下载链接| |-|-|-|-|-|-| -|EAST|ResNet50_vd|88.18%|85.51%|86.82%|[下载链接](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)| -|EAST|MobileNetV3|81.67%|79.83%|80.74%|[下载链接](https://paddleocr.bj.bcebos.com/det_mv3_east.tar)| -|DB|ResNet50_vd|83.79%|80.65%|82.19%|[下载链接](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)| -|DB|MobileNetV3|75.92%|73.18%|74.53%|[下载链接](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)| -|SAST|ResNet50_vd|92.18%|82.96%|87.33%|[下载链接](https://paddleocr.bj.bcebos.com/SAST/sast_r50_vd_icdar2015.tar)| +|EAST|ResNet50_vd||||[敬请期待]()| +|EAST|MobileNetV3||||[敬请期待]()| +|DB|ResNet50_vd||||[敬请期待]()| +|DB|MobileNetV3||||[敬请期待]()| +|SAST|ResNet50_vd||||[敬请期待]()| 在Total-text文本检测公开数据集上,算法效果如下: |模型|骨干网络|precision|recall|Hmean|下载链接| |-|-|-|-|-|-| -|SAST|ResNet50_vd|88.74%|79.80%|84.03%|[下载链接](https://paddleocr.bj.bcebos.com/SAST/sast_r50_vd_total_text.tar)| +|SAST|ResNet50_vd||||[敬请期待]()| **说明:** SAST模型训练额外加入了icdar2013、icdar2017、COCO-Text、ArT等公开数据集进行调优。PaddleOCR用到的经过整理格式的英文公开数据集下载:[百度云地址](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (提取码: 2bpi) @@ -48,15 +48,15 @@ PaddleOCR开源的文本识别算法列表: |模型|骨干网络|Avg Accuracy|模型存储命名|下载链接| |-|-|-|-|-| -|Rosetta|Resnet34_vd|80.24%|rec_r34_vd_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar)| -|Rosetta|MobileNetV3|78.16%|rec_mv3_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar)| -|CRNN|Resnet34_vd|82.20%|rec_r34_vd_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar)| -|CRNN|MobileNetV3|79.37%|rec_mv3_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar)| -|STAR-Net|Resnet34_vd|83.93%|rec_r34_vd_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)| -|STAR-Net|MobileNetV3|81.56%|rec_mv3_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar)| -|RARE|Resnet34_vd|84.90%|rec_r34_vd_tps_bilstm_attn|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)| -|RARE|MobileNetV3|83.32%|rec_mv3_tps_bilstm_attn|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)| -|SRN|Resnet50_vd_fpn|88.33%|rec_r50fpn_vd_none_srn|[下载链接](https://paddleocr.bj.bcebos.com/SRN/rec_r50fpn_vd_none_srn.tar)| +|Rosetta|Resnet34_vd||rec_r34_vd_none_none_ctc|[敬请期待]()| +|Rosetta|MobileNetV3||rec_mv3_none_none_ctc|[敬请期待]()| +|CRNN|Resnet34_vd||rec_r34_vd_none_bilstm_ctc|[敬请期待]()| +|CRNN|MobileNetV3||rec_mv3_none_bilstm_ctc|[敬请期待]()| +|STAR-Net|Resnet34_vd||rec_r34_vd_tps_bilstm_ctc|[敬请期待]()| +|STAR-Net|MobileNetV3||rec_mv3_tps_bilstm_ctc|[敬请期待]()| +|RARE|Resnet34_vd||rec_r34_vd_tps_bilstm_attn|[敬请期待]()| +|RARE|MobileNetV3||rec_mv3_tps_bilstm_attn|[敬请期待]()| +|SRN|Resnet50_vd_fpn||rec_r50fpn_vd_none_srn|[敬请期待]()| **说明:** SRN模型使用了数据扰动方法对上述提到对两个训练集进行增广,增广后的数据可以在[百度网盘](https://pan.baidu.com/s/1-HSZ-ZVdqBF2HaBZ5pRAKA)上下载,提取码: y3ry。 原始论文使用两阶段训练平均精度为89.74%,PaddleOCR中使用one-stage训练,平均精度为88.33%。两种预训练权重均在[下载链接](https://paddleocr.bj.bcebos.com/SRN/rec_r50fpn_vd_none_srn.tar)中。 diff --git a/doc/doc_en/algorithm_overview_en.md b/doc/doc_en/algorithm_overview_en.md index 2e21fd621971e062384a9323e79a8cf4498d7495..6cdf310f04e5e386e2292984a401a023d27bad30 100644 --- a/doc/doc_en/algorithm_overview_en.md +++ b/doc/doc_en/algorithm_overview_en.md @@ -19,17 +19,17 @@ On the ICDAR2015 dataset, the text detection result is as follows: |Model|Backbone|precision|recall|Hmean|Download link| |-|-|-|-|-|-| -|EAST|ResNet50_vd|88.18%|85.51%|86.82%|[Download link](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)| -|EAST|MobileNetV3|81.67%|79.83%|80.74%|[Download link](https://paddleocr.bj.bcebos.com/det_mv3_east.tar)| -|DB|ResNet50_vd|83.79%|80.65%|82.19%|[Download link](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)| -|DB|MobileNetV3|75.92%|73.18%|74.53%|[Download link](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)| -|SAST|ResNet50_vd|92.18%|82.96%|87.33%|[Download link](https://paddleocr.bj.bcebos.com/SAST/sast_r50_vd_icdar2015.tar)| +|EAST|ResNet50_vd||||[Coming soon]()| +|EAST|MobileNetV3||||[Coming soon]()| +|DB|ResNet50_vd||||[Coming soon]()| +|DB|MobileNetV3||||[Coming soon]()| +|SAST|ResNet50_vd||||[Coming soon]()| On Total-Text dataset, the text detection result is as follows: |Model|Backbone|precision|recall|Hmean|Download link| |-|-|-|-|-|-| -|SAST|ResNet50_vd|88.74%|79.80%|84.03%|[Download link](https://paddleocr.bj.bcebos.com/SAST/sast_r50_vd_total_text.tar)| +|SAST|ResNet50_vd||||[Coming soon]()| **Note:** Additional data, like icdar2013, icdar2017, COCO-Text, ArT, was added to the model training of SAST. Download English public dataset in organized format used by PaddleOCR from [Baidu Drive](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (download code: 2bpi). @@ -49,15 +49,15 @@ Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation r |Model|Backbone|Avg Accuracy|Module combination|Download link| |-|-|-|-|-| -|Rosetta|Resnet34_vd|80.24%|rec_r34_vd_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar)| -|Rosetta|MobileNetV3|78.16%|rec_mv3_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar)| -|CRNN|Resnet34_vd|82.20%|rec_r34_vd_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar)| -|CRNN|MobileNetV3|79.37%|rec_mv3_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar)| -|STAR-Net|Resnet34_vd|83.93%|rec_r34_vd_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)| -|STAR-Net|MobileNetV3|81.56%|rec_mv3_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar)| -|RARE|Resnet34_vd|84.90%|rec_r34_vd_tps_bilstm_attn|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)| -|RARE|MobileNetV3|83.32%|rec_mv3_tps_bilstm_attn|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)| -|SRN|Resnet50_vd_fpn|88.33%|rec_r50fpn_vd_none_srn|[Download link](https://paddleocr.bj.bcebos.com/SRN/rec_r50fpn_vd_none_srn.tar)| +|Rosetta|Resnet34_vd||rec_r34_vd_none_none_ctc|[Coming soon]()| +|Rosetta|MobileNetV3||rec_mv3_none_none_ctc|[Coming soon]()| +|CRNN|Resnet34_vd||rec_r34_vd_none_bilstm_ctc|[Coming soon]()| +|CRNN|MobileNetV3||rec_mv3_none_bilstm_ctc|[Coming soon]()| +|STAR-Net|Resnet34_vd||rec_r34_vd_tps_bilstm_ctc|[Coming soon]()| +|STAR-Net|MobileNetV3||rec_mv3_tps_bilstm_ctc|[Coming soon]()| +|RARE|Resnet34_vd||rec_r34_vd_tps_bilstm_attn|[Coming soon]()| +|RARE|MobileNetV3||rec_mv3_tps_bilstm_attn|[Coming soon]()| +|SRN|Resnet50_vd_fpn||rec_r50fpn_vd_none_srn|[Coming soon]()| **Note:** SRN model uses data expansion method to expand the two training sets mentioned above, and the expanded data can be downloaded from [Baidu Drive](https://pan.baidu.com/s/1-HSZ-ZVdqBF2HaBZ5pRAKA) (download code: y3ry).