diff --git a/paddleocr.py b/paddleocr.py index 95a19147fee6dff30af2264d26aceac85b114289..f865bd08cbe231c4c39e81f131da012771280367 100644 --- a/paddleocr.py +++ b/paddleocr.py @@ -567,6 +567,7 @@ class PPStructure(StructureSystem): assert params.structure_version in SUPPORT_STRUCTURE_MODEL_VERSION, "structure_version must in {}, but get {}".format( SUPPORT_STRUCTURE_MODEL_VERSION, params.structure_version) params.use_gpu = check_gpu(params.use_gpu) + params.mode = 'structure' if not params.show_log: logger.setLevel(logging.INFO) diff --git a/ppstructure/docs/inference.md b/ppstructure/docs/inference.md index 516db82784ce98abba6db14c795fe7323be508e0..7aa2fd0d99bebc2e2dddfc2bac0023f035a69a39 100644 --- a/ppstructure/docs/inference.md +++ b/ppstructure/docs/inference.md @@ -1,10 +1,12 @@ # 基于Python预测引擎推理 -- [1. 版面信息抽取](#1) - - [1.1 版面分析+表格识别](#1.1) - - [1.2 版面分析](#1.2) - - [1.3 表格识别](#1.3) -- [2. 关键信息抽取](#2) +- [1. 版面信息抽取](#1-版面信息抽取) + - [1.1 版面分析+表格识别](#11-版面分析表格识别) + - [1.2 版面分析](#12-版面分析) + - [1.3 表格识别](#13-表格识别) +- [2. 关键信息抽取](#2-关键信息抽取) + - [2.1 SER](#21-ser) + - [2.2 RE+SER](#22-reser) ## 1. 版面信息抽取 @@ -70,6 +72,8 @@ python3 predict_system.py --det_model_dir=inference/ch_PP-OCRv3_det_infer \ ## 2. 关键信息抽取 +### 2.1 SER + ```bash cd ppstructure @@ -77,13 +81,38 @@ mkdir inference && cd inference # 下载SER XFUND 模型并解压 wget https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/ser_vi_layoutxlm_xfund_infer.tar && tar -xf ser_vi_layoutxlm_xfund_infer.tar cd .. -python3 kie/predict_kie_token_ser.py \ +python3 predict_system.py \ --kie_algorithm=LayoutXLM \ - --ser_model_dir=../inference/ser_vi_layoutxlm_xfund_infer \ + --ser_model_dir=./inference/ser_vi_layoutxlm_xfund_infer \ --image_dir=./docs/kie/input/zh_val_42.jpg \ --ser_dict_path=../ppocr/utils/dict/kie_dict/xfund_class_list.txt \ --vis_font_path=../doc/fonts/simfang.ttf \ - --ocr_order_method="tb-yx" + --ocr_order_method="tb-yx" \ + --mode=kie ``` 运行完成后,每张图片会在`output`字段指定的目录下的`kie`目录下存放可视化之后的图片,图片名和输入图片名一致。 + +### 2.2 RE+SER + +```bash +cd ppstructure + +mkdir inference && cd inference +# 下载RE SER XFUND 模型并解压 +wget https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/ser_vi_layoutxlm_xfund_infer.tar && tar -xf ser_vi_layoutxlm_xfund_infer.tar +wget https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/re_vi_layoutxlm_xfund_infer.tar && tar -xf re_vi_layoutxlm_xfund_infer.tar +cd .. + +python3 predict_system.py \ + --kie_algorithm=LayoutXLM \ + --re_model_dir=./inference/re_vi_layoutxlm_xfund_infer \ + --ser_model_dir=./inference/ser_vi_layoutxlm_xfund_infer \ + --image_dir=./docs/kie/input/zh_val_42.jpg \ + --ser_dict_path=../ppocr/utils/dict/kie_dict/xfund_class_list.txt \ + --vis_font_path=../doc/fonts/simfang.ttf \ + --ocr_order_method="tb-yx" \ + --mode=kie +``` + +运行完成后,每张图片会在`output`字段指定的目录下的`kie`目录下有一个同名目录,目录中存放可视化图片和预测结果。 diff --git a/ppstructure/docs/inference_en.md b/ppstructure/docs/inference_en.md index 71019ec70f80e44bc16d2b0d07b0bb93b475b7e7..1bb683a684b58f6b3aa12a7be0be824031de361b 100644 --- a/ppstructure/docs/inference_en.md +++ b/ppstructure/docs/inference_en.md @@ -1,10 +1,12 @@ # Python Inference -- [1. Layout Structured Analysis](#1) - - [1.1 layout analysis + table recognition](#1.1) - - [1.2 layout analysis](#1.2) - - [1.3 table recognition](#1.3) -- [2. Key Information Extraction](#2) +- [1. Layout Structured Analysis](#1-layout-structured-analysis) + - [1.1 layout analysis + table recognition](#11-layout-analysis--table-recognition) + - [1.2 layout analysis](#12-layout-analysis) + - [1.3 table recognition](#13-table-recognition) +- [2. Key Information Extraction](#2-key-information-extraction) + - [2.1 SER](#21-ser) + - [2.2 RE+SER](#22-reser) ## 1. Layout Structured Analysis @@ -72,6 +74,7 @@ After the operation is completed, each image will have a directory with the same ## 2. Key Information Extraction +### 2.1 SER ```bash cd ppstructure @@ -79,13 +82,39 @@ mkdir inference && cd inference # download model wget https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/ser_vi_layoutxlm_xfund_infer.tar && tar -xf ser_vi_layoutxlm_xfund_infer.tar cd .. -python3 kie/predict_kie_token_ser.py \ +python3 predict_system.py \ --kie_algorithm=LayoutXLM \ - --ser_model_dir=../inference/ser_vi_layoutxlm_xfund_infer \ + --ser_model_dir=./inference/ser_vi_layoutxlm_xfund_infer \ --image_dir=./docs/kie/input/zh_val_42.jpg \ --ser_dict_path=../ppocr/utils/dict/kie_dict/xfund_class_list.txt \ --vis_font_path=../doc/fonts/simfang.ttf \ - --ocr_order_method="tb-yx" + --ocr_order_method="tb-yx" \ + --mode=kie ``` After the operation is completed, each image will store the visualized image in the `kie` directory under the directory specified by the `output` field, and the image name is the same as the input image name. + + +### 2.2 RE+SER + +```bash +cd ppstructure + +mkdir inference && cd inference +# download model +wget https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/ser_vi_layoutxlm_xfund_infer.tar && tar -xf ser_vi_layoutxlm_xfund_infer.tar +wget https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/re_vi_layoutxlm_xfund_infer.tar && tar -xf re_vi_layoutxlm_xfund_infer.tar +cd .. + +python3 predict_system.py \ + --kie_algorithm=LayoutXLM \ + --re_model_dir=./inference/re_vi_layoutxlm_xfund_infer \ + --ser_model_dir=./inference/ser_vi_layoutxlm_xfund_infer \ + --image_dir=./docs/kie/input/zh_val_42.jpg \ + --ser_dict_path=../ppocr/utils/dict/kie_dict/xfund_class_list.txt \ + --vis_font_path=../doc/fonts/simfang.ttf \ + --ocr_order_method="tb-yx" \ + --mode=kie +``` + +After the operation is completed, each image will have a directory with the same name in the `kie` directory under the directory specified by the `output` field, where the visual images and prediction results are stored. diff --git a/ppstructure/kie/predict_kie_token_ser_re.py b/ppstructure/kie/predict_kie_token_ser_re.py index c0bb237db6ba53be1e141b06a56421803b76cc5d..b29a8f69dbf99fa4410136277d7d92d0d41b2039 100644 --- a/ppstructure/kie/predict_kie_token_ser_re.py +++ b/ppstructure/kie/predict_kie_token_ser_re.py @@ -29,13 +29,11 @@ import tools.infer.utility as utility from tools.infer_kie_token_ser_re import make_input from ppocr.postprocess import build_post_process from ppocr.utils.logging import get_logger -from ppocr.utils.visual import draw_re_results +from ppocr.utils.visual import draw_ser_results, draw_re_results from ppocr.utils.utility import get_image_file_list, check_and_read from ppstructure.utility import parse_args from ppstructure.kie.predict_kie_token_ser import SerPredictor -from paddleocr import PaddleOCR - logger = get_logger() @@ -43,15 +41,20 @@ class SerRePredictor(object): def __init__(self, args): self.use_visual_backbone = args.use_visual_backbone self.ser_engine = SerPredictor(args) - - postprocess_params = {'name': 'VQAReTokenLayoutLMPostProcess'} - self.postprocess_op = build_post_process(postprocess_params) - self.predictor, self.input_tensor, self.output_tensors, self.config = \ - utility.create_predictor(args, 're', logger) + if args.re_model_dir is not None: + postprocess_params = {'name': 'VQAReTokenLayoutLMPostProcess'} + self.postprocess_op = build_post_process(postprocess_params) + self.predictor, self.input_tensor, self.output_tensors, self.config = \ + utility.create_predictor(args, 're', logger) + else: + self.predictor = None def __call__(self, img): starttime = time.time() - ser_results, ser_inputs, _ = self.ser_engine(img) + ser_results, ser_inputs, ser_elapse = self.ser_engine(img) + if self.predictor is None: + return ser_results, ser_elapse + re_input, entity_idx_dict_batch = make_input(ser_inputs, ser_results) if self.use_visual_backbone == False: re_input.pop(4) @@ -79,7 +82,7 @@ class SerRePredictor(object): def main(args): image_file_list = get_image_file_list(args.image_dir) - ser_predictor = SerRePredictor(args) + ser_re_predictor = SerRePredictor(args) count = 0 total_time = 0 @@ -95,7 +98,7 @@ def main(args): if img is None: logger.info("error in loading image:{}".format(image_file)) continue - re_res, elapse = ser_predictor(img) + re_res, elapse = ser_re_predictor(img) re_res = re_res[0] res_str = '{}\t{}\n'.format( @@ -105,14 +108,20 @@ def main(args): "ocr_info": re_res, }, ensure_ascii=False)) f_w.write(res_str) - - img_res = draw_re_results( - image_file, re_res, font_path=args.vis_font_path) - - img_save_path = os.path.join( - args.output, - os.path.splitext(os.path.basename(image_file))[0] + - "_ser_re.jpg") + if ser_re_predictor.predictor is not None: + img_res = draw_re_results( + image_file, re_res, font_path=args.vis_font_path) + img_save_path = os.path.join( + args.output, + os.path.splitext(os.path.basename(image_file))[0] + + "_ser_re.jpg") + else: + img_res = draw_ser_results( + image_file, re_res, font_path=args.vis_font_path) + img_save_path = os.path.join( + args.output, + os.path.splitext(os.path.basename(image_file))[0] + + "_ser.jpg") cv2.imwrite(img_save_path, img_res) logger.info("save vis result to {}".format(img_save_path)) diff --git a/ppstructure/predict_system.py b/ppstructure/predict_system.py index b827314b8911859faa449c3322ceceaf10769cf6..417002d1ef58471268071f96868617a4c9c52056 100644 --- a/ppstructure/predict_system.py +++ b/ppstructure/predict_system.py @@ -30,6 +30,7 @@ from copy import deepcopy from ppocr.utils.utility import get_image_file_list, check_and_read from ppocr.utils.logging import get_logger +from ppocr.utils.visual import draw_ser_results, draw_re_results from tools.infer.predict_system import TextSystem from ppstructure.layout.predict_layout import LayoutPredictor from ppstructure.table.predict_table import TableSystem, to_excel @@ -75,7 +76,8 @@ class StructureSystem(object): self.table_system = TableSystem(args) elif self.mode == 'kie': - raise NotImplementedError + from ppstructure.kie.predict_kie_token_ser_re import SerRePredictor + self.kie_predictor = SerRePredictor(args) def __call__(self, img, return_ocr_result_in_table=False, img_idx=0): time_dict = { @@ -176,7 +178,10 @@ class StructureSystem(object): time_dict['all'] = end - start return res_list, time_dict elif self.mode == 'kie': - raise NotImplementedError + re_res, elapse = self.kie_predictor(img) + time_dict['kie'] = elapse + time_dict['all'] = elapse + return re_res[0], time_dict return None, None @@ -235,15 +240,32 @@ def main(args): all_res = [] for index, img in enumerate(imgs): res, time_dict = structure_sys(img, img_idx=index) + img_save_path = os.path.join(save_folder, img_name, + 'show_{}.jpg'.format(index)) + os.makedirs(os.path.join(save_folder, img_name), exist_ok=True) if structure_sys.mode == 'structure' and res != []: - save_structure_res(res, save_folder, img_name, index) draw_img = draw_structure_result(img, res, args.vis_font_path) - img_save_path = os.path.join(save_folder, img_name, - 'show_{}.jpg'.format(index)) + save_structure_res(res, save_folder, img_name, index) elif structure_sys.mode == 'kie': - raise NotImplementedError - # draw_img = draw_ser_results(img, res, args.vis_font_path) - # img_save_path = os.path.join(save_folder, img_name + '.jpg') + if structure_sys.kie_predictor.predictor is not None: + draw_img = draw_re_results( + img, res, font_path=args.vis_font_path) + else: + draw_img = draw_ser_results( + img, res, font_path=args.vis_font_path) + + with open( + os.path.join(save_folder, img_name, + 'res_{}_kie.txt'.format(index)), + 'w', + encoding='utf8') as f: + res_str = '{}\t{}\n'.format( + image_file, + json.dumps( + { + "ocr_info": res + }, ensure_ascii=False)) + f.write(res_str) if res != []: cv2.imwrite(img_save_path, draw_img) logger.info('result save to {}'.format(img_save_path)) diff --git a/ppstructure/utility.py b/ppstructure/utility.py index 59b58edb4b0c9c5992981073b12e419fe1cc84d6..7f8a06d2ec1cd18f19975542667cc0f2cf8ad825 100644 --- a/ppstructure/utility.py +++ b/ppstructure/utility.py @@ -11,9 +11,9 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. - +import random import ast -from PIL import Image +from PIL import Image, ImageDraw, ImageFont import numpy as np from tools.infer.utility import draw_ocr_box_txt, str2bool, init_args as infer_args @@ -64,6 +64,7 @@ def init_args(): parser.add_argument( "--mode", type=str, + choices=['structure', 'kie'], default='structure', help='structure and kie is supported') parser.add_argument(