未验证 提交 84ef96f3 编写于 作者: E Evezerest 提交者: GitHub

Merge branch 'release/2.0' into release2.0

...@@ -8,7 +8,7 @@ PaddleOCR同时支持动态图与静态图两种编程范式 ...@@ -8,7 +8,7 @@ PaddleOCR同时支持动态图与静态图两种编程范式
- 静态图版本:develop分支 - 静态图版本:develop分支
**近期更新** **近期更新**
- 2021.2.22 [FAQ](./doc/doc_ch/FAQ.md)新增5个高频问题,总数172个,每周一都会更新,欢迎大家持续关注。 - 2021.3.1 [FAQ](./doc/doc_ch/FAQ.md)新增5个高频问题,总数177个,每周一都会更新,欢迎大家持续关注。
- 2021.2.8 正式发布PaddleOCRv2.0(branch release/2.0)并设置为推荐用户使用的默认分支. 发布的详细内容,请参考: https://github.com/PaddlePaddle/PaddleOCR/releases/tag/v2.0.0 - 2021.2.8 正式发布PaddleOCRv2.0(branch release/2.0)并设置为推荐用户使用的默认分支. 发布的详细内容,请参考: https://github.com/PaddlePaddle/PaddleOCR/releases/tag/v2.0.0
- 2021.1.26,28,29 PaddleOCR官方研发团队带来技术深入解读三日直播课,1月26日、28日、29日晚上19:30,[直播地址](https://live.bilibili.com/21689802) - 2021.1.26,28,29 PaddleOCR官方研发团队带来技术深入解读三日直播课,1月26日、28日、29日晚上19:30,[直播地址](https://live.bilibili.com/21689802)
- 2021.1.21 更新多语言识别模型,目前支持语种超过27种,[多语言模型下载](./doc/doc_ch/models_list.md),包括中文简体、中文繁体、英文、法文、德文、韩文、日文、意大利文、西班牙文、葡萄牙文、俄罗斯文、阿拉伯文等,后续计划可以参考[多语言研发计划](https://github.com/PaddlePaddle/PaddleOCR/issues/1048) - 2021.1.21 更新多语言识别模型,目前支持语种超过27种,[多语言模型下载](./doc/doc_ch/models_list.md),包括中文简体、中文繁体、英文、法文、德文、韩文、日文、意大利文、西班牙文、葡萄牙文、俄罗斯文、阿拉伯文等,后续计划可以参考[多语言研发计划](https://github.com/PaddlePaddle/PaddleOCR/issues/1048)
......
...@@ -131,7 +131,7 @@ if __name__ == '__main__': ...@@ -131,7 +131,7 @@ if __name__ == '__main__':
if FLAGS.val: if FLAGS.val:
global_config['Eval']['dataset']['label_file_list'] = [FLAGS.val] global_config['Eval']['dataset']['label_file_list'] = [FLAGS.val]
eval_label_path = os.path.join(project_path,FLAGS.val) eval_label_path = os.path.join(project_path,FLAGS.val)
loss_file(Eval_label_path) loss_file(eval_label_path)
if FLAGS.dict: if FLAGS.dict:
global_config['Global']['character_dict_path'] = FLAGS.dict global_config['Global']['character_dict_path'] = FLAGS.dict
dict_path = os.path.join(project_path,FLAGS.dict) dict_path = os.path.join(project_path,FLAGS.dict)
......
...@@ -76,7 +76,7 @@ void CRNNRecognizer::Run(std::vector<std::vector<std::vector<int>>> boxes, ...@@ -76,7 +76,7 @@ void CRNNRecognizer::Run(std::vector<std::vector<std::vector<int>>> boxes,
float(*std::max_element(&predict_batch[n * predict_shape[2]], float(*std::max_element(&predict_batch[n * predict_shape[2]],
&predict_batch[(n + 1) * predict_shape[2]])); &predict_batch[(n + 1) * predict_shape[2]]));
if (argmax_idx > 0 && (!(i > 0 && argmax_idx == last_index))) { if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
score += max_value; score += max_value;
count += 1; count += 1;
str_res.push_back(label_list_[argmax_idx]); str_res.push_back(label_list_[argmax_idx]);
......
...@@ -9,55 +9,47 @@ ...@@ -9,55 +9,47 @@
## PaddleOCR常见问题汇总(持续更新) ## PaddleOCR常见问题汇总(持续更新)
* [近期更新(2021.2.22](#近期更新) * [近期更新(2021.3.1](#近期更新)
* [【精选】OCR精选10个问题](#OCR精选10个问题) * [【精选】OCR精选10个问题](#OCR精选10个问题)
* [【理论篇】OCR通用32个问题](#OCR通用问题) * [【理论篇】OCR通用32个问题](#OCR通用问题)
* [基础知识7题](#基础知识) * [基础知识7题](#基础知识)
* [数据集7题](#数据集2) * [数据集7题](#数据集2)
* [模型训练调优18题](#模型训练调优2) * [模型训练调优18题](#模型训练调优2)
* [【实战篇】PaddleOCR实战125个问题](#PaddleOCR实战问题) * [【实战篇】PaddleOCR实战130个问题](#PaddleOCR实战问题)
* [使用咨询43](#使用咨询) * [使用咨询48](#使用咨询)
* [数据集18题](#数据集3) * [数据集18题](#数据集3)
* [模型训练调优30题](#模型训练调优3) * [模型训练调优30题](#模型训练调优3)
* [预测部署39题](#预测部署3) * [预测部署39题](#预测部署3)
<a name="近期更新"></a> <a name="近期更新"></a>
## 近期更新(2021.2.22) ## 近期更新(2021.3.1)
#### Q3.1.42: 训练识别任务的时候,在CPU上运行时,报错`The setting of Parameter-Server must has server_num or servers`。 #### Q3.1.44: 文字识别训练,设置图像高度不等于32时报错
**A**:ctc decode的时候,输入需要是1维向量,因此降采样之后,建议特征图高度为1,ppocr中,特征图会降采样32倍,之后高度正好为1,所以有2种解决方案
**A**:这是训练任务启动方式不对造成的。 - 指定输入shape高度为32(推荐)
- 在backbone的mv3中添加更多的降采样模块,保证输出的特征图高度为1
1. 在使用CPU或者单块GPU训练的时候,可以直接使用`python3 tools/train.py -c xxx.yml`的方式启动。
2. 在使用多块GPU训练的时候,需要使用`distributed.launch`的方式启动,如`python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c xxx.yml`,这种方式需要安装NCCL库,如果没有的话会报错。
#### Q3.1.43:使用StyleText进行数据合成时,文本(TextInput)的长度远超StyleInput的长度,该怎么处理与合成呢?
**A**:在使用StyleText进行数据合成的时候,建议StyleInput的长度长于TextInput的长度。有2种方法可以处理上述问题:
1. 将StyleInput按列的方向进行复制与扩充,直到其超过TextInput的长度。 #### Q3.1.45: 增大batch_size模型训练速度没有明显提升
2. 将TextInput进行裁剪,保证每段TextInput都稍短于StyleInput,分别合成之后,再拼接在一起。 如果bs打得太大,加速效果不明显的话,可以试一下增大初始化内存的值,运行代码前设置环境变量:
```
实际使用中发现,使用第2种方法的效果在长文本合成的场景中的合成效果更好,StyleText中提供的也是第2种数据合成的逻辑。 export FLAGS_initial_cpu_memory_in_mb=2000 # 设置初始化内存约2G左右
```
#### Q3.4.37: 在windows上进行cpp inference的部署时,总是提示找不到`paddle_fluid.dll`和`opencv_world346.dll`,
**A**:有2种方法可以解决这个问题:
1. 将paddle预测库和opencv库的地址添加到系统环境变量中。
2. 将提示缺失的dll文件拷贝到编译产出的`ocr_system.exe`文件夹中。
#### Q3.4.38:想在Mac上部署,从哪里下载预测库呢?
**A**:Mac上的Paddle预测库可以从这里下载:[https://paddle-inference-lib.bj.bcebos.com/mac/2.0.0/cpu_avx_openblas/paddle_inference.tgz](https://paddle-inference-lib.bj.bcebos.com/mac/2.0.0/cpu_avx_openblas/paddle_inference.tgz) #### Q3.1.46: 动态图分支(dygraph,release/2.0),训练模型和推理模型效果不一致
当前问题表现为:使用训练完的模型直接测试结果较好,但是转换为inference model后,预测结果不一致;出现这个问题一般是两个原因:
- 1. 预处理函数设置的不一致
- 2. 后处理参数不一致
repo中config.yml文件的前后处理参数和inference预测默认的超参数有不一致的地方,建议排查下训练模型预测和inference预测的前后处理,
参考[issue](https://github.com/PaddlePaddle/PaddleOCR/issues/2080)
#### Q3.1.47: paddleocr package 报错 FatalError: `Process abort signal` is detected by the operating system
首先,按照[安装文档](./installation.md)安装PaddleOCR的运行环境;另外,检查python环境,python3.6/3.8上可能会出现这个问题,建议用python3.7,
参考[issue](https://github.com/PaddlePaddle/PaddleOCR/issues/2069)
#### Q3.4.39:内网环境如何进行服务化部署呢?
**A**:仍然可以使用PaddleServing或者HubServing进行服务化部署,保证内网地址可以访问即可。 #### Q3.1.48: 下载的识别模型解压后缺失文件,没有期望的inference.pdiparams, inference.pdmodel等文件
用解压软件解压可能会出现这个问题,建议二次解压下或者用命令行解压`tar xf `
<a name="OCR精选10个问题"></a> <a name="OCR精选10个问题"></a>
...@@ -531,6 +523,35 @@ release/2.0-rc1-0是基于Paddle 2.0rc1的稳定版本,release/2.0是基于Pad ...@@ -531,6 +523,35 @@ release/2.0-rc1-0是基于Paddle 2.0rc1的稳定版本,release/2.0是基于Pad
实际使用中发现,使用第2种方法的效果在长文本合成的场景中的合成效果更好,StyleText中提供的也是第2种数据合成的逻辑。 实际使用中发现,使用第2种方法的效果在长文本合成的场景中的合成效果更好,StyleText中提供的也是第2种数据合成的逻辑。
#### Q3.1.44: 文字识别训练,设置图像高度不等于32时报错
**A**:ctc decode的时候,输入需要是1维向量,因此降采样之后,建议特征图高度为1,ppocr中,特征图会降采样32倍,之后高度正好为1,所以有2种解决方案
- 指定输入shape高度为32(推荐)
- 在backbone的mv3中添加更多的降采样模块,保证输出的特征图高度为1
#### Q3.1.45: 增大batch_size模型训练速度没有明显提升
如果bs打得太大,加速效果不明显的话,可以试一下增大初始化内存的值,运行代码前设置环境变量:
```
export FLAGS_initial_cpu_memory_in_mb=2000 # 设置初始化内存约2G左右
```
#### Q3.1.46: 动态图分支(dygraph,release/2.0),训练模型和推理模型效果不一致
当前问题表现为:使用训练完的模型直接测试结果较好,但是转换为inference model后,预测结果不一致;出现这个问题一般是两个原因:
- 1. 预处理函数设置的不一致
- 2. 后处理参数不一致
repo中config.yml文件的前后处理参数和inference预测默认的超参数有不一致的地方,建议排查下训练模型预测和inference预测的前后处理,
参考[issue](https://github.com/PaddlePaddle/PaddleOCR/issues/2080)
#### Q3.1.47: paddleocr package 报错 FatalError: `Process abort signal` is detected by the operating system
首先,按照[安装文档](./installation.md)安装PaddleOCR的运行环境;另外,检查python环境,python3.6/3.8上可能会出现这个问题,建议用python3.7,
参考[issue](https://github.com/PaddlePaddle/PaddleOCR/issues/2069)
#### Q3.1.48: 下载的识别模型解压后缺失文件,没有期望的inference.pdiparams, inference.pdmodel等文件
用解压软件解压可能会出现这个问题,建议二次解压下或者用命令行解压`tar xf `
<a name="数据集3"></a> <a name="数据集3"></a>
### 数据集 ### 数据集
......
...@@ -32,7 +32,6 @@ class MakeShrinkMap(object): ...@@ -32,7 +32,6 @@ class MakeShrinkMap(object):
text_polys, ignore_tags = self.validate_polygons(text_polys, text_polys, ignore_tags = self.validate_polygons(text_polys,
ignore_tags, h, w) ignore_tags, h, w)
gt = np.zeros((h, w), dtype=np.float32) gt = np.zeros((h, w), dtype=np.float32)
# gt = np.zeros((1, h, w), dtype=np.float32)
mask = np.ones((h, w), dtype=np.float32) mask = np.ones((h, w), dtype=np.float32)
for i in range(len(text_polys)): for i in range(len(text_polys)):
polygon = text_polys[i] polygon = text_polys[i]
...@@ -51,7 +50,8 @@ class MakeShrinkMap(object): ...@@ -51,7 +50,8 @@ class MakeShrinkMap(object):
shrinked = [] shrinked = []
# Increase the shrink ratio every time we get multiple polygon returned back # Increase the shrink ratio every time we get multiple polygon returned back
possible_ratios = np.arange(self.shrink_ratio, 1, self.shrink_ratio) possible_ratios = np.arange(self.shrink_ratio, 1,
self.shrink_ratio)
np.append(possible_ratios, 1) np.append(possible_ratios, 1)
# print(possible_ratios) # print(possible_ratios)
for ratio in possible_ratios: for ratio in possible_ratios:
......
...@@ -14,7 +14,6 @@ ...@@ -14,7 +14,6 @@
import logging import logging
import os import os
import imghdr
import cv2 import cv2
...@@ -51,13 +50,15 @@ def get_image_file_list(img_file): ...@@ -51,13 +50,15 @@ def get_image_file_list(img_file):
if img_file is None or not os.path.exists(img_file): if img_file is None or not os.path.exists(img_file):
raise Exception("not found any img file in {}".format(img_file)) raise Exception("not found any img file in {}".format(img_file))
img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif', 'GIF'} img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif'}
if os.path.isfile(img_file) and imghdr.what(img_file) in img_end: if os.path.isfile(img_file) and os.path.splitext(img_file)[-1][1:].lower(
) in img_end:
imgs_lists.append(img_file) imgs_lists.append(img_file)
elif os.path.isdir(img_file): elif os.path.isdir(img_file):
for single_file in os.listdir(img_file): for single_file in os.listdir(img_file):
file_path = os.path.join(img_file, single_file) file_path = os.path.join(img_file, single_file)
if os.path.isfile(file_path) and imghdr.what(file_path) in img_end: if os.path.isfile(file_path) and os.path.splitext(file_path)[-1][
1:].lower() in img_end:
imgs_lists.append(file_path) imgs_lists.append(file_path)
if len(imgs_lists) == 0: if len(imgs_lists) == 0:
raise Exception("not found any img file in {}".format(img_file)) raise Exception("not found any img file in {}".format(img_file))
......
...@@ -39,10 +39,7 @@ class TextDetector(object): ...@@ -39,10 +39,7 @@ class TextDetector(object):
self.args = args self.args = args
self.det_algorithm = args.det_algorithm self.det_algorithm = args.det_algorithm
pre_process_list = [{ pre_process_list = [{
'DetResizeForTest': { 'DetResizeForTest': None
'limit_side_len': args.det_limit_side_len,
'limit_type': args.det_limit_type
}
}, { }, {
'NormalizeImage': { 'NormalizeImage': {
'std': [0.229, 0.224, 0.225], 'std': [0.229, 0.224, 0.225],
......
...@@ -97,7 +97,7 @@ def main(): ...@@ -97,7 +97,7 @@ def main():
preds = model(images) preds = model(images)
post_result = post_process_class(preds, shape_list) post_result = post_process_class(preds, shape_list)
boxes = post_result[0]['points'] boxes = post_result[0]['points']
# write resule # write result
dt_boxes_json = [] dt_boxes_json = []
for box in boxes: for box in boxes:
tmp_json = {"transcription": ""} tmp_json = {"transcription": ""}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册