提交 7cb0b549 编写于 作者: L LDOUBLEV

fix doc of slim

上级 5e35b625
...@@ -24,12 +24,12 @@ ...@@ -24,12 +24,12 @@
```bash ```bash
git clone https://github.com/PaddlePaddle/PaddleSlim.git git clone https://github.com/PaddlePaddle/PaddleSlim.git
git checkout develop git checkout develop
cd Paddleslim cd PaddleSlim
python3 setup.py install python3 setup.py install
``` ```
### 2. 获取预训练模型 ### 2. 获取预训练模型
模型裁剪需要加载事先训练好的模型,PaddleOCR也提供了一系列(模型)[../../../doc/doc_ch/models_list.md],开发者可根据需要自行选择模型或使用自己的模型。 模型裁剪需要加载事先训练好的模型,PaddleOCR也提供了一系列[模型](../../../doc/doc_ch/models_list.md),开发者可根据需要自行选择模型或使用自己的模型。
### 3. 敏感度分析训练 ### 3. 敏感度分析训练
......
...@@ -23,14 +23,14 @@ Five steps for OCR model prune: ...@@ -23,14 +23,14 @@ Five steps for OCR model prune:
```bash ```bash
git clone https://github.com/PaddlePaddle/PaddleSlim.git git clone https://github.com/PaddlePaddle/PaddleSlim.git
git checkout develop git checkout develop
cd Paddleslim cd PaddleSlim
python3 setup.py install python3 setup.py install
``` ```
### 2. Download Pretrain Model ### 2. Download Pretrain Model
Model prune needs to load pre-trained models. Model prune needs to load pre-trained models.
PaddleOCR also provides a series of (models)[../../../doc/doc_en/models_list_en.md]. Developers can choose their own models or use their own models according to their needs. PaddleOCR also provides a series of [models](../../../doc/doc_en/models_list_en.md). Developers can choose their own models or use their own models according to their needs.
### 3. Pruning sensitivity analysis ### 3. Pruning sensitivity analysis
......
...@@ -23,7 +23,7 @@ ...@@ -23,7 +23,7 @@
```bash ```bash
git clone https://github.com/PaddlePaddle/PaddleSlim.git git clone https://github.com/PaddlePaddle/PaddleSlim.git
cd Paddleslim cd PaddleSlim
python setup.py install python setup.py install
``` ```
...@@ -37,12 +37,12 @@ PaddleOCR提供了一系列训练好的[模型](../../../doc/doc_ch/models_list. ...@@ -37,12 +37,12 @@ PaddleOCR提供了一系列训练好的[模型](../../../doc/doc_ch/models_list.
量化训练的代码位于slim/quantization/quant.py 中,比如训练检测模型,训练指令如下: 量化训练的代码位于slim/quantization/quant.py 中,比如训练检测模型,训练指令如下:
```bash ```bash
python deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model='your trained model' Global.save_model_dir=./output/quant_model python deploy/slim/quantization/quant.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model='your trained model' Global.save_model_dir=./output/quant_model
# 比如下载提供的训练模型 # 比如下载提供的训练模型
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar
tar -xf ch_ppocr_mobile_v2.0_det_train.tar tar -xf ch_ppocr_mobile_v2.0_det_train.tar
python deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.save_inference_dir=./output/quant_inference_model python deploy/slim/quantization/quant.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model=./ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.save_model_dir=./output/quant_inference_model
``` ```
如果要训练识别模型的量化,修改配置文件和加载的模型参数即可。 如果要训练识别模型的量化,修改配置文件和加载的模型参数即可。
...@@ -52,10 +52,10 @@ python deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global ...@@ -52,10 +52,10 @@ python deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global
在得到量化训练保存的模型后,我们可以将其导出为inference_model,用于预测部署: 在得到量化训练保存的模型后,我们可以将其导出为inference_model,用于预测部署:
```bash ```bash
python deploy/slim/quantization/export_model.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=output/quant_model/best_accuracy Global.save_model_dir=./output/quant_inference_model python deploy/slim/quantization/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.checkpoints=output/quant_model/best_accuracy Global.save_inference_dir=./output/quant_inference_model
``` ```
### 5. 量化模型部署 ### 5. 量化模型部署
上述步骤导出的量化模型,参数精度仍然是FP32,表现为量化后的模型大小不变,但是参数的数值范围是int8,导出的模型可以通过PaddleLite的opt模型转换工具完成模型转换。 上述步骤导出的量化模型,参数精度仍然是FP32,但是参数的数值范围是int8,导出的模型可以通过PaddleLite的opt模型转换工具完成模型转换。
量化模型部署的可参考 [移动端模型部署](../../lite/readme.md) 量化模型部署的可参考 [移动端模型部署](../../lite/readme.md)
...@@ -26,7 +26,7 @@ After training, if you want to further compress the model size and accelerate th ...@@ -26,7 +26,7 @@ After training, if you want to further compress the model size and accelerate th
```bash ```bash
git clone https://github.com/PaddlePaddle/PaddleSlim.git git clone https://github.com/PaddlePaddle/PaddleSlim.git
cd Paddleslim cd PaddlSlim
python setup.py install python setup.py install
``` ```
...@@ -43,12 +43,12 @@ After the quantization strategy is defined, the model can be quantified. ...@@ -43,12 +43,12 @@ After the quantization strategy is defined, the model can be quantified.
The code for quantization training is located in `slim/quantization/quant.py`. For example, to train a detection model, the training instructions are as follows: The code for quantization training is located in `slim/quantization/quant.py`. For example, to train a detection model, the training instructions are as follows:
```bash ```bash
python deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model='your trained model' Global.save_model_dir=./output/quant_model python deploy/slim/quantization/quant.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model='your trained model' Global.save_model_dir=./output/quant_model
# download provided model # download provided model
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar
tar -xf ch_ppocr_mobile_v2.0_det_train.tar tar -xf ch_ppocr_mobile_v2.0_det_train.tar
python deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.save_model_dir=./output/quant_model python deploy/slim/quantization/quant.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model=./ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.save_model_dir=./output/quant_model
``` ```
...@@ -57,7 +57,7 @@ python deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global ...@@ -57,7 +57,7 @@ python deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global
After getting the model after pruning and finetuning we, can export it as inference_model for predictive deployment: After getting the model after pruning and finetuning we, can export it as inference_model for predictive deployment:
```bash ```bash
python deploy/slim/quantization/export_model.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=output/quant_model/best_accuracy Global.save_inference_dir=./output/quant_inference_model python deploy/slim/quantization/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.checkpoints=output/quant_model/best_accuracy Global.save_inference_dir=./output/quant_inference_model
``` ```
### 5. Deploy ### 5. Deploy
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册