提交 6b60f074 编写于 作者: qq_25193841's avatar qq_25193841

Merge remote-tracking branch 'origin/dygraph' into dy1

...@@ -123,7 +123,7 @@ PaddleOCR support a variety of cutting-edge algorithms related to OCR, and devel ...@@ -123,7 +123,7 @@ PaddleOCR support a variety of cutting-edge algorithms related to OCR, and devel
- [Inference and Deployment](./deploy/README.md) - [Inference and Deployment](./deploy/README.md)
- [Python Inference](./ppstructure/docs/inference_en.md) - [Python Inference](./ppstructure/docs/inference_en.md)
- [C++ Inference](./deploy/cpp_infer/readme.md) - [C++ Inference](./deploy/cpp_infer/readme.md)
- [Serving](./deploy/pdserving/README.md) - [Serving](./deploy/hubserving/readme_en.md)
- [Academic Algorithms](./doc/doc_en/algorithm_overview_en.md) - [Academic Algorithms](./doc/doc_en/algorithm_overview_en.md)
- [Text detection](./doc/doc_en/algorithm_overview_en.md) - [Text detection](./doc/doc_en/algorithm_overview_en.md)
- [Text recognition](./doc/doc_en/algorithm_overview_en.md) - [Text recognition](./doc/doc_en/algorithm_overview_en.md)
......
...@@ -135,7 +135,7 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力 ...@@ -135,7 +135,7 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力
- [推理部署](./deploy/README_ch.md) - [推理部署](./deploy/README_ch.md)
- [基于Python预测引擎推理](./ppstructure/docs/inference.md) - [基于Python预测引擎推理](./ppstructure/docs/inference.md)
- [基于C++预测引擎推理](./deploy/cpp_infer/readme_ch.md) - [基于C++预测引擎推理](./deploy/cpp_infer/readme_ch.md)
- [服务化部署](./deploy/pdserving/README_CN.md) - [服务化部署](./deploy/hubserving/readme.md)
- [前沿算法与模型🚀](./doc/doc_ch/algorithm_overview.md) - [前沿算法与模型🚀](./doc/doc_ch/algorithm_overview.md)
- [文本检测算法](./doc/doc_ch/algorithm_overview.md) - [文本检测算法](./doc/doc_ch/algorithm_overview.md)
- [文本识别算法](./doc/doc_ch/algorithm_overview.md) - [文本识别算法](./doc/doc_ch/algorithm_overview.md)
......
...@@ -191,7 +191,6 @@ Eval: ...@@ -191,7 +191,6 @@ Eval:
channel_first: False channel_first: False
- DetLabelEncode: # Class handling label - DetLabelEncode: # Class handling label
- DetResizeForTest: - DetResizeForTest:
# image_shape: [736, 1280]
- NormalizeImage: - NormalizeImage:
scale: 1./255. scale: 1./255.
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
......
...@@ -24,6 +24,7 @@ Architecture: ...@@ -24,6 +24,7 @@ Architecture:
model_type: det model_type: det
Models: Models:
Student: Student:
pretrained:
model_type: det model_type: det
algorithm: DB algorithm: DB
Transform: null Transform: null
...@@ -40,6 +41,7 @@ Architecture: ...@@ -40,6 +41,7 @@ Architecture:
name: DBHead name: DBHead
k: 50 k: 50
Student2: Student2:
pretrained:
model_type: det model_type: det
algorithm: DB algorithm: DB
Transform: null Transform: null
...@@ -91,14 +93,11 @@ Loss: ...@@ -91,14 +93,11 @@ Loss:
- ["Student", "Student2"] - ["Student", "Student2"]
maps_name: "thrink_maps" maps_name: "thrink_maps"
weight: 1.0 weight: 1.0
# act: None
model_name_pairs: ["Student", "Student2"] model_name_pairs: ["Student", "Student2"]
key: maps key: maps
- DistillationDBLoss: - DistillationDBLoss:
weight: 1.0 weight: 1.0
model_name_list: ["Student", "Student2"] model_name_list: ["Student", "Student2"]
# key: maps
# name: DBLoss
balance_loss: true balance_loss: true
main_loss_type: DiceLoss main_loss_type: DiceLoss
alpha: 5 alpha: 5
...@@ -197,6 +196,7 @@ Train: ...@@ -197,6 +196,7 @@ Train:
drop_last: false drop_last: false
batch_size_per_card: 8 batch_size_per_card: 8
num_workers: 4 num_workers: 4
Eval: Eval:
dataset: dataset:
name: SimpleDataSet name: SimpleDataSet
...@@ -204,31 +204,21 @@ Eval: ...@@ -204,31 +204,21 @@ Eval:
label_file_list: label_file_list:
- ./train_data/icdar2015/text_localization/test_icdar2015_label.txt - ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
transforms: transforms:
- DecodeImage: - DecodeImage: # load image
img_mode: BGR img_mode: BGR
channel_first: false channel_first: False
- DetLabelEncode: null - DetLabelEncode: # Class handling label
- DetResizeForTest: null - DetResizeForTest:
- NormalizeImage: - NormalizeImage:
scale: 1./255. scale: 1./255.
mean: mean: [0.485, 0.456, 0.406]
- 0.485 std: [0.229, 0.224, 0.225]
- 0.456 order: 'hwc'
- 0.406 - ToCHWImage:
std:
- 0.229
- 0.224
- 0.225
order: hwc
- ToCHWImage: null
- KeepKeys: - KeepKeys:
keep_keys: keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
- image
- shape
- polys
- ignore_tags
loader: loader:
shuffle: false shuffle: False
drop_last: false drop_last: False
batch_size_per_card: 1 batch_size_per_card: 1 # must be 1
num_workers: 2 num_workers: 2
\ No newline at end of file
...@@ -390,6 +390,7 @@ im_show.save('result.jpg') ...@@ -390,6 +390,7 @@ im_show.save('result.jpg')
| det_db_thresh | DB模型输出预测图的二值化阈值 | 0.3 | | det_db_thresh | DB模型输出预测图的二值化阈值 | 0.3 |
| det_db_box_thresh | DB模型输出框的阈值,低于此值的预测框会被丢弃 | 0.5 | | det_db_box_thresh | DB模型输出框的阈值,低于此值的预测框会被丢弃 | 0.5 |
| det_db_unclip_ratio | DB模型输出框扩大的比例 | 2 | | det_db_unclip_ratio | DB模型输出框扩大的比例 | 2 |
| det_db_score_mode | 计算检测框score的方式,有'fast'和'slow',如果要检测的文字有弯曲,建议用'slow','slow'模式计算的box的score偏大,box不容易被过滤掉 | 'fast' |
| det_east_score_thresh | EAST模型输出预测图的二值化阈值 | 0.8 | | det_east_score_thresh | EAST模型输出预测图的二值化阈值 | 0.8 |
| det_east_cover_thresh | EAST模型输出框的阈值,低于此值的预测框会被丢弃 | 0.1 | | det_east_cover_thresh | EAST模型输出框的阈值,低于此值的预测框会被丢弃 | 0.1 |
| det_east_nms_thresh | EAST模型输出框NMS的阈值 | 0.2 | | det_east_nms_thresh | EAST模型输出框NMS的阈值 | 0.2 |
......
...@@ -342,6 +342,7 @@ im_show.save('result.jpg') ...@@ -342,6 +342,7 @@ im_show.save('result.jpg')
| det_db_thresh | Binarization threshold value of DB output map | 0.3 | | det_db_thresh | Binarization threshold value of DB output map | 0.3 |
| det_db_box_thresh | The threshold value of the DB output box. Boxes score lower than this value will be discarded | 0.5 | | det_db_box_thresh | The threshold value of the DB output box. Boxes score lower than this value will be discarded | 0.5 |
| det_db_unclip_ratio | The expanded ratio of DB output box | 2 | | det_db_unclip_ratio | The expanded ratio of DB output box | 2 |
| det_db_score_mode | The parameter that control how the score of the detection frame is calculated. There are 'fast' and 'slow' options. If the text to be detected is curved, it is recommended to use 'slow' | 'fast' |
| det_east_score_thresh | Binarization threshold value of EAST output map | 0.8 | | det_east_score_thresh | Binarization threshold value of EAST output map | 0.8 |
| det_east_cover_thresh | The threshold value of the EAST output box. Boxes score lower than this value will be discarded | 0.1 | | det_east_cover_thresh | The threshold value of the EAST output box. Boxes score lower than this value will be discarded | 0.1 |
| det_east_nms_thresh | The NMS threshold value of EAST model output box | 0.2 | | det_east_nms_thresh | The NMS threshold value of EAST model output box | 0.2 |
......
...@@ -502,7 +502,7 @@ def resize_norm_img_chinese(img, image_shape): ...@@ -502,7 +502,7 @@ def resize_norm_img_chinese(img, image_shape):
max_wh_ratio = imgW * 1.0 / imgH max_wh_ratio = imgW * 1.0 / imgH
h, w = img.shape[0], img.shape[1] h, w = img.shape[0], img.shape[1]
ratio = w * 1.0 / h ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, ratio) max_wh_ratio = min(max(max_wh_ratio, ratio), max_wh_ratio)
imgW = int(imgH * max_wh_ratio) imgW = int(imgH * max_wh_ratio)
if math.ceil(imgH * ratio) > imgW: if math.ceil(imgH * ratio) > imgW:
resized_w = imgW resized_w = imgW
......
...@@ -60,19 +60,19 @@ class KLJSLoss(object): ...@@ -60,19 +60,19 @@ class KLJSLoss(object):
], "mode can only be one of ['kl', 'KL', 'js', 'JS']" ], "mode can only be one of ['kl', 'KL', 'js', 'JS']"
self.mode = mode self.mode = mode
def __call__(self, p1, p2, reduction="mean"): def __call__(self, p1, p2, reduction="mean", eps=1e-5):
if self.mode.lower() == 'kl': if self.mode.lower() == 'kl':
loss = paddle.multiply(p2, loss = paddle.multiply(p2,
paddle.log((p2 + 1e-5) / (p1 + 1e-5) + 1e-5)) paddle.log((p2 + eps) / (p1 + eps) + eps))
loss += paddle.multiply( loss += paddle.multiply(p1,
p1, paddle.log((p1 + 1e-5) / (p2 + 1e-5) + 1e-5)) paddle.log((p1 + eps) / (p2 + eps) + eps))
loss *= 0.5 loss *= 0.5
elif self.mode.lower() == "js": elif self.mode.lower() == "js":
loss = paddle.multiply( loss = paddle.multiply(
p2, paddle.log((2 * p2 + 1e-5) / (p1 + p2 + 1e-5) + 1e-5)) p2, paddle.log((2 * p2 + eps) / (p1 + p2 + eps) + eps))
loss += paddle.multiply( loss += paddle.multiply(
p1, paddle.log((2 * p1 + 1e-5) / (p1 + p2 + 1e-5) + 1e-5)) p1, paddle.log((2 * p1 + eps) / (p1 + p2 + eps) + eps))
loss *= 0.5 loss *= 0.5
else: else:
raise ValueError( raise ValueError(
......
English | [简体中文](README_ch.md) English | [简体中文](README_ch.md)
# PP-Structure
- [1. Introduction](#1-introduction) - [1. Introduction](#1-introduction)
- [2. Features](#2-features) - [2. Features](#2-features)
- [3. Results](#3-results) - [3. Results](#3-results)
......
English | [简体中文](README_ch.md) English | [简体中文](README_ch.md)
- [1. Introduction](#1-introduction) # Key Information Extraction (KIE)
- [2. Accuracy and performance](#2-Accuracy-and-performance) - [1. Introduction](#1-introduction)
- [3. Visualization](#3-Visualization) - [2. Performance](#2-performance)
- [3. Visualization](#3-visualization)
- [3.1 SER](#31-ser) - [3.1 SER](#31-ser)
- [3.2 RE](#32-re) - [3.2 RE](#32-re)
- [4. Usage](#4-usage) - [4. Usage](#4-usage)
- [4.1 Prepare for the environment](#41-Prepare-for-the-environment) - [4.1 Prepare for the environment](#41-prepare-for-the-environment)
- [4.2 Quick start](#42-Quick-start) - [4.2 Quick start](#42-quick-start)
- [4.3 More](#43-More) - [4.3 More](#43-more)
- [5. Reference](#5-Reference) - [5. Reference](#5-reference)
- [6. License](#6-License) - [6. License](#6-license)
## 1. Introduction ## 1. Introduction
...@@ -31,7 +32,7 @@ The main features of the key information extraction module in PP-Structure are a ...@@ -31,7 +32,7 @@ The main features of the key information extraction module in PP-Structure are a
- Support SER model export and inference using PaddleInference. - Support SER model export and inference using PaddleInference.
## 2. Accuracy and performance ## 2. Performance
We evaluate the methods on the Chinese dataset of [XFUND](https://github.com/doc-analysis/XFUND), and the performance is as follows We evaluate the methods on the Chinese dataset of [XFUND](https://github.com/doc-analysis/XFUND), and the performance is as follows
......
...@@ -3,21 +3,22 @@ English | [简体中文](README_ch.md) ...@@ -3,21 +3,22 @@ English | [简体中文](README_ch.md)
# Layout analysis # Layout analysis
- [1. Introduction](#1-Introduction) - [1. Introduction](#1-Introduction)
- [2. Install](#2-Install) - [2. Quick start](#2-Quick-start)
- [2.1 Install PaddlePaddle](#21-Install-paddlepaddle) - [3. Install](#3-Install)
- [2.2 Install PaddleDetection](#22-Install-paddledetection) - [3.1 Install PaddlePaddle](#31-Install-paddlepaddle)
- [3. Data preparation](#3-Data-preparation) - [3.2 Install PaddleDetection](#32-Install-paddledetection)
- [3.1 English data set](#31-English-data-set) - [4. Data preparation](#4-Data-preparation)
- [3.2 More datasets](#32-More-datasets) - [4.1 English data set](#41-English-data-set)
- [4. Start training](#4-Start-training) - [4.2 More datasets](#42-More-datasets)
- [4.1 Train](#41-Train) - [5. Start training](#5-Start-training)
- [4.2 FGD Distillation training](#42-FGD-Distillation-training) - [5.1 Train](#51-Train)
- [5. Model evaluation and prediction](#5-Model-evaluation-and-prediction) - [5.2 FGD Distillation training](#52-Fgd-distillation-training)
- [5.1 Indicator evaluation](#51-Indicator-evaluation) - [6. Model evaluation and prediction](#6-Model-evaluation-and-prediction)
- [5.2 Test layout analysis results](#52-Test-layout-analysis-results) - [6.1 Indicator evaluation](#61-Indicator-evaluation)
- [6 Model export and inference](#6-Model-export-and-inference) - [6.2 Test layout analysis results](#62-Test-layout-analysis-results)
- [6.1 Model export](#61-Model-export) - [7. Model export and inference](#7-Model-export-and-inference)
- [6.2 Model inference](#62-Model-inference) - [7.1 Model export](#71-Model-export)
- [7.2 Model inference](#72-Model-inference)
## 1. Introduction ## 1. Introduction
...@@ -28,11 +29,12 @@ Layout analysis refers to the regional division of documents in the form of pict ...@@ -28,11 +29,12 @@ Layout analysis refers to the regional division of documents in the form of pict
<img src="../docs/layout/layout.png" width="800"> <img src="../docs/layout/layout.png" width="800">
</div> </div>
## 2. Quick start
PP-Structure currently provides layout analysis models in Chinese, English and table documents. For the model link, see [models_list](../docs/models_list_en.md). The whl package is also provided for quick use, see [quickstart](../docs/quickstart_en.md) for details.
## 3. Install
## 2. Install ### 3.1. Install PaddlePaddle
### 2.1. Install PaddlePaddle
- **(1) Install PaddlePaddle** - **(1) Install PaddlePaddle**
...@@ -47,7 +49,7 @@ python3 -m pip install "paddlepaddle>=2.3" -i https://mirror.baidu.com/pypi/simp ...@@ -47,7 +49,7 @@ python3 -m pip install "paddlepaddle>=2.3" -i https://mirror.baidu.com/pypi/simp
``` ```
For more requirements, please refer to the instructions in the [Install file](https://www.paddlepaddle.org.cn/install/quick) For more requirements, please refer to the instructions in the [Install file](https://www.paddlepaddle.org.cn/install/quick)
### 2.2. Install PaddleDetection ### 3.2. Install PaddleDetection
- **(1)Download PaddleDetection Source code** - **(1)Download PaddleDetection Source code**
...@@ -62,11 +64,11 @@ cd PaddleDetection ...@@ -62,11 +64,11 @@ cd PaddleDetection
python3 -m pip install -r requirements.txt python3 -m pip install -r requirements.txt
``` ```
## 3. Data preparation ## 4. Data preparation
If you want to experience the prediction process directly, you can skip data preparation and download the pre-training model. If you want to experience the prediction process directly, you can skip data preparation and download the pre-training model.
### 3.1. English data set ### 4.1. English data set
Download document analysis data set [PubLayNet](https://developer.ibm.com/exchanges/data/all/publaynet/)(Dataset 96G),contains 5 classes:`{0: "Text", 1: "Title", 2: "List", 3:"Table", 4:"Figure"}` Download document analysis data set [PubLayNet](https://developer.ibm.com/exchanges/data/all/publaynet/)(Dataset 96G),contains 5 classes:`{0: "Text", 1: "Title", 2: "List", 3:"Table", 4:"Figure"}`
...@@ -141,7 +143,7 @@ The JSON file contains the annotations of all images, and the data is stored in ...@@ -141,7 +143,7 @@ The JSON file contains the annotations of all images, and the data is stored in
} }
``` ```
### 3.2. More datasets ### 4.2. More datasets
We provide CDLA(Chinese layout analysis), TableBank(Table layout analysis)etc. data set download links,process to the JSON format of the above annotation file,that is, the training can be conducted in the same way。 We provide CDLA(Chinese layout analysis), TableBank(Table layout analysis)etc. data set download links,process to the JSON format of the above annotation file,that is, the training can be conducted in the same way。
...@@ -154,7 +156,7 @@ We provide CDLA(Chinese layout analysis), TableBank(Table layout analysis)etc. d ...@@ -154,7 +156,7 @@ We provide CDLA(Chinese layout analysis), TableBank(Table layout analysis)etc. d
| [DocBank](https://github.com/doc-analysis/DocBank) | Large-scale dataset (500K document pages) constructed using weakly supervised methods for document layout analysis, containing 12 categories:Author, Caption, Date, Equation, Figure, Footer, List, Paragraph, Reference, Section, Table, Title | | [DocBank](https://github.com/doc-analysis/DocBank) | Large-scale dataset (500K document pages) constructed using weakly supervised methods for document layout analysis, containing 12 categories:Author, Caption, Date, Equation, Figure, Footer, List, Paragraph, Reference, Section, Table, Title |
## 4. Start training ## 5. Start training
Training scripts, evaluation scripts, and prediction scripts are provided, and the PubLayNet pre-training model is used as an example in this section. Training scripts, evaluation scripts, and prediction scripts are provided, and the PubLayNet pre-training model is used as an example in this section.
...@@ -171,7 +173,7 @@ wget https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_ ...@@ -171,7 +173,7 @@ wget https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_
If the test image is Chinese, the pre-trained model of Chinese CDLA dataset can be downloaded to identify 10 types of document regions:Table, Figure, Figure caption, Table, Table caption, Header, Footer, Reference, Equation,Download the training model and inference model of Model 'picodet_lcnet_x1_0_fgd_layout_cdla' in [layout analysis model](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/ppstructure/docs/models_list.md)。If only the table area in the image is detected, you can download the pre-trained model of the table dataset, and download the training model and inference model of the 'picodet_LCnet_x1_0_FGd_layout_table' model in [Layout Analysis model](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/ppstructure/docs/models_list.md) If the test image is Chinese, the pre-trained model of Chinese CDLA dataset can be downloaded to identify 10 types of document regions:Table, Figure, Figure caption, Table, Table caption, Header, Footer, Reference, Equation,Download the training model and inference model of Model 'picodet_lcnet_x1_0_fgd_layout_cdla' in [layout analysis model](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/ppstructure/docs/models_list.md)。If only the table area in the image is detected, you can download the pre-trained model of the table dataset, and download the training model and inference model of the 'picodet_LCnet_x1_0_FGd_layout_table' model in [Layout Analysis model](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/ppstructure/docs/models_list.md)
### 4.1. Train ### 5.1. Train
Train: Train:
...@@ -247,7 +249,7 @@ After starting training normally, you will see the following log output: ...@@ -247,7 +249,7 @@ After starting training normally, you will see the following log output:
**Note that the configuration file for prediction / evaluation must be consistent with the training.** **Note that the configuration file for prediction / evaluation must be consistent with the training.**
### 4.2. FGD Distillation Training ### 5.2. FGD Distillation Training
PaddleDetection supports FGD-based [Focal and Global Knowledge Distillation for Detectors]( https://arxiv.org/abs/2111.11837v1) The training process of the target detection model of distillation, FGD distillation is divided into two parts `Focal` and `Global`. `Focal` Distillation separates the foreground and background of the image, allowing the student model to focus on the key pixels of the foreground and background features of the teacher model respectively;` Global`Distillation section reconstructs the relationships between different pixels and transfers them from the teacher to the student to compensate for the global information lost in `Focal`Distillation. PaddleDetection supports FGD-based [Focal and Global Knowledge Distillation for Detectors]( https://arxiv.org/abs/2111.11837v1) The training process of the target detection model of distillation, FGD distillation is divided into two parts `Focal` and `Global`. `Focal` Distillation separates the foreground and background of the image, allowing the student model to focus on the key pixels of the foreground and background features of the teacher model respectively;` Global`Distillation section reconstructs the relationships between different pixels and transfers them from the teacher to the student to compensate for the global information lost in `Focal`Distillation.
...@@ -265,9 +267,9 @@ python3 tools/train.py \ ...@@ -265,9 +267,9 @@ python3 tools/train.py \
- `-c`: Specify the model configuration file. - `-c`: Specify the model configuration file.
- `--slim_config`: Specify the compression policy profile. - `--slim_config`: Specify the compression policy profile.
## 5. Model evaluation and prediction ## 6. Model evaluation and prediction
### 5.1. Indicator evaluation ### 6.1. Indicator evaluation
Model parameters in training are saved by default in `output/picodet_ Lcnet_ X1_ 0_ Under the layout` directory. When evaluating indicators, you need to set `weights` to point to the saved parameter file.Assessment datasets can be accessed via `configs/picodet/legacy_ Model/application/layout_ Analysis/picodet_ Lcnet_ X1_ 0_ Layout. Yml` . Modify `EvalDataset` : `img_dir`,`anno_ Path`and`dataset_dir` setting. Model parameters in training are saved by default in `output/picodet_ Lcnet_ X1_ 0_ Under the layout` directory. When evaluating indicators, you need to set `weights` to point to the saved parameter file.Assessment datasets can be accessed via `configs/picodet/legacy_ Model/application/layout_ Analysis/picodet_ Lcnet_ X1_ 0_ Layout. Yml` . Modify `EvalDataset` : `img_dir`,`anno_ Path`and`dataset_dir` setting.
...@@ -310,7 +312,7 @@ python3 tools/eval.py \ ...@@ -310,7 +312,7 @@ python3 tools/eval.py \
- `--slim_config`: Specify the distillation policy profile. - `--slim_config`: Specify the distillation policy profile.
- `-o weights`: Specify the model path trained by the distillation algorithm. - `-o weights`: Specify the model path trained by the distillation algorithm.
### 5.2. Test Layout Analysis Results ### 6.2. Test Layout Analysis Results
The profile predicted to be used must be consistent with the training, for example, if you pass `python3 tools/train'. Py-c configs/picodet/legacy_ Model/application/layout_ Analysis/picodet_ Lcnet_ X1_ 0_ Layout. Yml` completed the training process for the model. The profile predicted to be used must be consistent with the training, for example, if you pass `python3 tools/train'. Py-c configs/picodet/legacy_ Model/application/layout_ Analysis/picodet_ Lcnet_ X1_ 0_ Layout. Yml` completed the training process for the model.
...@@ -343,10 +345,10 @@ python3 tools/infer.py \ ...@@ -343,10 +345,10 @@ python3 tools/infer.py \
``` ```
## 6. Model Export and Inference ## 7. Model Export and Inference
### 6.1 Model Export ### 7.1 Model Export
The inference model (the model saved by `paddle.jit.save`) is generally a solidified model saved after the model training is completed, and is mostly used to give prediction in deployment. The inference model (the model saved by `paddle.jit.save`) is generally a solidified model saved after the model training is completed, and is mostly used to give prediction in deployment.
...@@ -385,7 +387,7 @@ python3 tools/export_model.py \ ...@@ -385,7 +387,7 @@ python3 tools/export_model.py \
--output_dir=output_inference/ --output_dir=output_inference/
``` ```
### 6.2 Model inference ### 7.2 Model inference
Replace model_with the provided inference training model for inference or the FGD distillation training `model_dir`Inference model path, execute the following commands for inference: Replace model_with the provided inference training model for inference or the FGD distillation training `model_dir`Inference model path, execute the following commands for inference:
......
...@@ -3,21 +3,22 @@ ...@@ -3,21 +3,22 @@
# 版面分析 # 版面分析
- [1. 简介](#1-简介) - [1. 简介](#1-简介)
- [2. 安装](#2-安装) - [2. 快速开始](#2-快速开始)
- [2.1 安装PaddlePaddle](#21-安装paddlepaddle) - [3. 安装](#3-安装)
- [2.2 安装PaddleDetection](#22-安装paddledetection) - [3.1 安装PaddlePaddle](#31-安装paddlepaddle)
- [3. 数据准备](#3-数据准备) - [3.2 安装PaddleDetection](#32-安装paddledetection)
- [3.1 英文数据集](#31-英文数据集) - [4. 数据准备](#4-数据准备)
- [3.2 更多数据集](#32-更多数据集) - [4.1 英文数据集](#41-英文数据集)
- [4. 开始训练](#4-开始训练) - [4.2 更多数据集](#42-更多数据集)
- [4.1 启动训练](#41-启动训练) - [5. 开始训练](#5-开始训练)
- [4.2 FGD蒸馏训练](#42-FGD蒸馏训练) - [5.1 启动训练](#51-启动训练)
- [5. 模型评估与预测](#5-模型评估与预测) - [5.2 FGD蒸馏训练](#52-fgd蒸馏训练)
- [5.1 指标评估](#51-指标评估) - [6. 模型评估与预测](#6-模型评估与预测)
- [5.2 测试版面分析结果](#52-测试版面分析结果) - [6.1 指标评估](#61-指标评估)
- [6 模型导出与预测](#6-模型导出与预测) - [6.2 测试版面分析结果](#62-测试版面分析结果)
- [6.1 模型导出](#61-模型导出) - [7 模型导出与预测](#7-模型导出与预测)
- [6.2 模型推理](#62-模型推理) - [7.1 模型导出](#71-模型导出)
- [7.2 模型推理](#72-模型推理)
## 1. 简介 ## 1. 简介
...@@ -27,11 +28,14 @@ ...@@ -27,11 +28,14 @@
<img src="../docs/layout/layout.png" width="800"> <img src="../docs/layout/layout.png" width="800">
</div> </div>
## 2. 快速开始
PP-Structure目前提供了中文、英文、表格三类文档版面分析模型,模型链接见 [models_list](../docs/models_list.md#1-版面分析模型)。也提供了whl包的形式方便快速使用,详见 [quickstart](../docs/quickstart.md)
## 2. 安装依赖
### 2.1. 安装PaddlePaddle ## 3. 安装
### 3.1. 安装PaddlePaddle
- **(1) 安装PaddlePaddle** - **(1) 安装PaddlePaddle**
...@@ -46,7 +50,7 @@ python3 -m pip install "paddlepaddle>=2.3" -i https://mirror.baidu.com/pypi/simp ...@@ -46,7 +50,7 @@ python3 -m pip install "paddlepaddle>=2.3" -i https://mirror.baidu.com/pypi/simp
``` ```
更多需求,请参照[安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作。 更多需求,请参照[安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作。
### 2.2. 安装PaddleDetection ### 3.2. 安装PaddleDetection
- **(1)下载PaddleDetection源码** - **(1)下载PaddleDetection源码**
...@@ -61,11 +65,11 @@ cd PaddleDetection ...@@ -61,11 +65,11 @@ cd PaddleDetection
python3 -m pip install -r requirements.txt python3 -m pip install -r requirements.txt
``` ```
## 3. 数据准备 ## 4. 数据准备
如果希望直接体验预测过程,可以跳过数据准备,下载我们提供的预训练模型。 如果希望直接体验预测过程,可以跳过数据准备,下载我们提供的预训练模型。
### 3.1. 英文数据集 ### 4.1. 英文数据集
下载文档分析数据集[PubLayNet](https://developer.ibm.com/exchanges/data/all/publaynet/)(数据集96G),包含5个类:`{0: "Text", 1: "Title", 2: "List", 3:"Table", 4:"Figure"}` 下载文档分析数据集[PubLayNet](https://developer.ibm.com/exchanges/data/all/publaynet/)(数据集96G),包含5个类:`{0: "Text", 1: "Title", 2: "List", 3:"Table", 4:"Figure"}`
...@@ -140,7 +144,7 @@ json文件包含所有图像的标注,数据以字典嵌套的方式存放, ...@@ -140,7 +144,7 @@ json文件包含所有图像的标注,数据以字典嵌套的方式存放,
} }
``` ```
### 3.2. 更多数据集 ### 4.2. 更多数据集
我们提供了CDLA(中文版面分析)、TableBank(表格版面分析)等数据集的下连接,处理为上述标注文件json格式,即可以按相同方式进行训练。 我们提供了CDLA(中文版面分析)、TableBank(表格版面分析)等数据集的下连接,处理为上述标注文件json格式,即可以按相同方式进行训练。
...@@ -153,7 +157,7 @@ json文件包含所有图像的标注,数据以字典嵌套的方式存放, ...@@ -153,7 +157,7 @@ json文件包含所有图像的标注,数据以字典嵌套的方式存放,
| [DocBank](https://github.com/doc-analysis/DocBank) | 使用弱监督方法构建的大规模数据集(500K文档页面),用于文档布局分析,包含12类:Author、Caption、Date、Equation、Figure、Footer、List、Paragraph、Reference、Section、Table、Title | | [DocBank](https://github.com/doc-analysis/DocBank) | 使用弱监督方法构建的大规模数据集(500K文档页面),用于文档布局分析,包含12类:Author、Caption、Date、Equation、Figure、Footer、List、Paragraph、Reference、Section、Table、Title |
## 4. 开始训练 ## 5. 开始训练
提供了训练脚本、评估脚本和预测脚本,本节将以PubLayNet预训练模型为例进行讲解。 提供了训练脚本、评估脚本和预测脚本,本节将以PubLayNet预训练模型为例进行讲解。
...@@ -170,7 +174,7 @@ wget https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_ ...@@ -170,7 +174,7 @@ wget https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_
如果测试图片为中文,可以下载中文CDLA数据集的预训练模型,识别10类文档区域:Table、Figure、Figure caption、Table、Table caption、Header、Footer、Reference、Equation,在[版面分析模型](../docs/models_list.md)中下载`picodet_lcnet_x1_0_fgd_layout_cdla`模型的训练模型和推理模型。如果只检测图片中的表格区域,可以下载表格数据集的预训练模型,在[版面分析模型](../docs/models_list.md)中下载`picodet_lcnet_x1_0_fgd_layout_table`模型的训练模型和推理模型。 如果测试图片为中文,可以下载中文CDLA数据集的预训练模型,识别10类文档区域:Table、Figure、Figure caption、Table、Table caption、Header、Footer、Reference、Equation,在[版面分析模型](../docs/models_list.md)中下载`picodet_lcnet_x1_0_fgd_layout_cdla`模型的训练模型和推理模型。如果只检测图片中的表格区域,可以下载表格数据集的预训练模型,在[版面分析模型](../docs/models_list.md)中下载`picodet_lcnet_x1_0_fgd_layout_table`模型的训练模型和推理模型。
### 4.1. 启动训练 ### 5.1. 启动训练
开始训练: 开始训练:
...@@ -246,7 +250,7 @@ python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py \ ...@@ -246,7 +250,7 @@ python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py \
**注意,预测/评估时的配置文件请务必与训练一致。** **注意,预测/评估时的配置文件请务必与训练一致。**
### 4.2. FGD蒸馏训练 ### 5.2. FGD蒸馏训练
PaddleDetection支持了基于FGD([Focal and Global Knowledge Distillation for Detectors](https://arxiv.org/abs/2111.11837v1))蒸馏的目标检测模型训练过程,FGD蒸馏分为两个部分`Focal``Global``Focal`蒸馏分离图像的前景和背景,让学生模型分别关注教师模型的前景和背景部分特征的关键像素;`Global`蒸馏部分重建不同像素之间的关系并将其从教师转移到学生,以补偿`Focal`蒸馏中丢失的全局信息。 PaddleDetection支持了基于FGD([Focal and Global Knowledge Distillation for Detectors](https://arxiv.org/abs/2111.11837v1))蒸馏的目标检测模型训练过程,FGD蒸馏分为两个部分`Focal``Global``Focal`蒸馏分离图像的前景和背景,让学生模型分别关注教师模型的前景和背景部分特征的关键像素;`Global`蒸馏部分重建不同像素之间的关系并将其从教师转移到学生,以补偿`Focal`蒸馏中丢失的全局信息。
...@@ -264,9 +268,9 @@ python3 tools/train.py \ ...@@ -264,9 +268,9 @@ python3 tools/train.py \
- `-c`: 指定模型配置文件。 - `-c`: 指定模型配置文件。
- `--slim_config`: 指定压缩策略配置文件。 - `--slim_config`: 指定压缩策略配置文件。
## 5. 模型评估与预测 ## 6. 模型评估与预测
### 5.1. 指标评估 ### 6.1. 指标评估
训练中模型参数默认保存在`output/picodet_lcnet_x1_0_layout`目录下。在评估指标时,需要设置`weights`指向保存的参数文件。评估数据集可以通过 `configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml` 修改`EvalDataset`中的 `image_dir``anno_path``dataset_dir` 设置。 训练中模型参数默认保存在`output/picodet_lcnet_x1_0_layout`目录下。在评估指标时,需要设置`weights`指向保存的参数文件。评估数据集可以通过 `configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml` 修改`EvalDataset`中的 `image_dir``anno_path``dataset_dir` 设置。
...@@ -309,7 +313,7 @@ python3 tools/eval.py \ ...@@ -309,7 +313,7 @@ python3 tools/eval.py \
- `--slim_config`: 指定蒸馏策略配置文件。 - `--slim_config`: 指定蒸馏策略配置文件。
- `-o weights`: 指定蒸馏算法训好的模型路径。 - `-o weights`: 指定蒸馏算法训好的模型路径。
### 5.2. 测试版面分析结果 ### 6.2 测试版面分析结果
预测使用的配置文件必须与训练一致,如您通过 `python3 tools/train.py -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml` 完成了模型的训练过程。 预测使用的配置文件必须与训练一致,如您通过 `python3 tools/train.py -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml` 完成了模型的训练过程。
...@@ -342,10 +346,10 @@ python3 tools/infer.py \ ...@@ -342,10 +346,10 @@ python3 tools/infer.py \
``` ```
## 6. 模型导出与预测 ## 7. 模型导出与预测
### 6.1 模型导出 ### 7.1 模型导出
inference 模型(`paddle.jit.save`保存的模型) 一般是模型训练,把模型结构和模型参数保存在文件中的固化模型,多用于预测部署场景。 训练过程中保存的模型是checkpoints模型,保存的只有模型的参数,多用于恢复训练等。 与checkpoints模型相比,inference 模型会额外保存模型的结构信息,在预测部署、加速推理上性能优越,灵活方便,适合于实际系统集成。 inference 模型(`paddle.jit.save`保存的模型) 一般是模型训练,把模型结构和模型参数保存在文件中的固化模型,多用于预测部署场景。 训练过程中保存的模型是checkpoints模型,保存的只有模型的参数,多用于恢复训练等。 与checkpoints模型相比,inference 模型会额外保存模型的结构信息,在预测部署、加速推理上性能优越,灵活方便,适合于实际系统集成。
...@@ -382,7 +386,7 @@ python3 tools/export_model.py \ ...@@ -382,7 +386,7 @@ python3 tools/export_model.py \
### 6.2 模型推理 ### 7.2 模型推理
若使用**提供的推理训练模型推理**,或使用**FGD蒸馏训练的模型**,更换`model_dir`推理模型路径,执行如下命令进行推理: 若使用**提供的推理训练模型推理**,或使用**FGD蒸馏训练的模型**,更换`model_dir`推理模型路径,执行如下命令进行推理:
......
English | [简体中文](README_ch.md) English | [简体中文](README_ch.md)
- [Getting Started](#getting-started) # Layout Recovery
- [1. Introduction](#1)
- [2. Install](#2) - [1. Introduction](#1)
- [2.1 Installation dependencies](#2.1) - [2. Install](#2)
- [2.1 Install PaddlePaddle](#2.1)
- [2.2 Install PaddleOCR](#2.2) - [2.2 Install PaddleOCR](#2.2)
- [3. Quick Start](#3) - [3. Quick Start](#3)
- [3.1 Download models](#3.1) - [3.1 Download models](#3.1)
- [3.2 Layout recovery](#3.2) - [3.2 Layout recovery](#3.2)
- [4. More](#4) - [4. More](#4)
<a name="1"></a> <a name="1"></a>
...@@ -25,16 +26,13 @@ Layout recovery combines [layout analysis](../layout/README.md)、[table recogni ...@@ -25,16 +26,13 @@ Layout recovery combines [layout analysis](../layout/README.md)、[table recogni
<div align="center"> <div align="center">
<img src="../docs/recovery/recovery_ch.jpg" width = "800" /> <img src="../docs/recovery/recovery_ch.jpg" width = "800" />
</div> </div>
<a name="2"></a> <a name="2"></a>
## 2. Install ## 2. Install
<a name="2.1"></a> <a name="2.1"></a>
### 2.1 Install dependencies ### 2.1 Install PaddlePaddle
- **(1) Install PaddlePaddle**
```bash ```bash
python3 -m pip install --upgrade pip python3 -m pip install --upgrade pip
...@@ -44,7 +42,6 @@ python3 -m pip install "paddlepaddle-gpu" -i https://mirror.baidu.com/pypi/simpl ...@@ -44,7 +42,6 @@ python3 -m pip install "paddlepaddle-gpu" -i https://mirror.baidu.com/pypi/simpl
# CPU installation # CPU installation
python3 -m pip install "paddlepaddle" -i https://mirror.baidu.com/pypi/simple python3 -m pip install "paddlepaddle" -i https://mirror.baidu.com/pypi/simple
```` ````
For more requirements, please refer to the instructions in [Installation Documentation](https://www.paddlepaddle.org.cn/en/install/quick?docurl=/documentation/docs/en/install/pip/macos-pip_en.html). For more requirements, please refer to the instructions in [Installation Documentation](https://www.paddlepaddle.org.cn/en/install/quick?docurl=/documentation/docs/en/install/pip/macos-pip_en.html).
...@@ -85,6 +82,8 @@ Through layout analysis, we divided the image/PDF documents into regions, locate ...@@ -85,6 +82,8 @@ Through layout analysis, we divided the image/PDF documents into regions, locate
We can restore the test picture through the layout information, OCR detection and recognition structure, table information, and saved pictures. We can restore the test picture through the layout information, OCR detection and recognition structure, table information, and saved pictures.
The whl package is also provided for quick use, see [quickstart](../docs/quickstart_en.md) for details.
<a name="3.1"></a> <a name="3.1"></a>
### 3.1 Download models ### 3.1 Download models
...@@ -151,10 +150,10 @@ Field: ...@@ -151,10 +150,10 @@ Field:
## 4. More ## 4. More
For training, evaluation and inference tutorial for text detection models, please refer to [text detection doc](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_ch/detection.md). For training, evaluation and inference tutorial for text detection models, please refer to [text detection doc](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_en/detection_en.md).
For training, evaluation and inference tutorial for text recognition models, please refer to [text recognition doc](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_ch/recognition.md). For training, evaluation and inference tutorial for text recognition models, please refer to [text recognition doc](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_en/recognition_en.md).
For training, evaluation and inference tutorial for layout analysis models, please refer to [layout analysis doc](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/ppstructure/layout/README_ch.md) For training, evaluation and inference tutorial for layout analysis models, please refer to [layout analysis doc](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/ppstructure/layout/README.md)
For training, evaluation and inference tutorial for table recognition models, please refer to [table recognition doc](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/ppstructure/table/README_ch.md) For training, evaluation and inference tutorial for table recognition models, please refer to [table recognition doc](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/ppstructure/table/README.md)
[English](README.md) | 简体中文 [English](README.md) | 简体中文
# 版面恢复使用说明 # 版面恢复
- [1. 简介](#1) - [1. 简介](#1)
- [2. 安装](#2) - [2. 安装](#2)
- [2.1 安装依赖](#2.1) - [2.1 安装PaddlePaddle](#2.1)
- [2.2 安装PaddleOCR](#2.2) - [2.2 安装PaddleOCR](#2.2)
- [3. 使用](#3) - [3. 使用](#3)
- [3.1 下载模型](#3.1) - [3.1 下载模型](#3.1)
- [3.2 版面恢复](#3.2) - [3.2 版面恢复](#3.2)
...@@ -27,16 +26,13 @@ ...@@ -27,16 +26,13 @@
<div align="center"> <div align="center">
<img src="../docs/recovery/recovery_ch.jpg" width = "800" /> <img src="../docs/recovery/recovery_ch.jpg" width = "800" />
</div> </div>
<a name="2"></a> <a name="2"></a>
## 2. 安装 ## 2. 安装
<a name="2.1"></a> <a name="2.1"></a>
### 2.1 安装依赖 ### 2.1 安装PaddlePaddle
- **(1) 安装PaddlePaddle**
```bash ```bash
python3 -m pip install --upgrade pip python3 -m pip install --upgrade pip
...@@ -87,6 +83,8 @@ python3 -m pip install -r ppstructure/recovery/requirements.txt ...@@ -87,6 +83,8 @@ python3 -m pip install -r ppstructure/recovery/requirements.txt
我们通过版面信息、OCR检测和识别结构、表格信息、保存的图片,对测试图片进行恢复即可。 我们通过版面信息、OCR检测和识别结构、表格信息、保存的图片,对测试图片进行恢复即可。
提供如下代码实现版面恢复,也提供了whl包的形式方便快速使用,详见 [quickstart](../docs/quickstart.md)
<a name="3.1"></a> <a name="3.1"></a>
### 3.1 下载模型 ### 3.1 下载模型
......
Global:
use_gpu: true
epoch_num: 100
log_smooth_window: 20
print_batch_step: 20
save_model_dir: ./output/SLANet
save_epoch_step: 400
# evaluation is run every 1000 iterations after the 0th iteration
eval_batch_step: [0, 1000]
cal_metric_during_train: True
pretrained_model:
checkpoints:
save_inference_dir: ./output/SLANet/infer
use_visualdl: False
infer_img: doc/table/table.jpg
# for data or label process
character_dict_path: ppocr/utils/dict/table_structure_dict.txt
character_type: en
max_text_length: &max_text_length 500
box_format: &box_format 'xyxy' # 'xywh', 'xyxy', 'xyxyxyxy'
infer_mode: False
use_sync_bn: True
save_res_path: 'output/infer'
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
clip_norm: 5.0
lr:
name: Piecewise
learning_rate: 0.001
decay_epochs : [40, 50]
values : [0.001, 0.0001, 0.00005]
regularizer:
name: 'L2'
factor: 0.00000
Architecture:
model_type: table
algorithm: SLANet
Backbone:
name: PPLCNet
scale: 1.0
pretrained: true
use_ssld: true
Neck:
name: CSPPAN
out_channels: 96
Head:
name: SLAHead
hidden_size: 256
max_text_length: *max_text_length
loc_reg_num: &loc_reg_num 4
Loss:
name: SLALoss
structure_weight: 1.0
loc_weight: 2.0
loc_loss: smooth_l1
PostProcess:
name: TableLabelDecode
merge_no_span_structure: &merge_no_span_structure True
Metric:
name: TableMetric
main_indicator: acc
compute_bbox_metric: False
loc_reg_num: *loc_reg_num
box_format: *box_format
Train:
dataset:
name: PubTabDataSet
data_dir: ./train_data/pubtabnet/train/
label_file_list: [./train_data/pubtabnet/train.jsonl]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- TableLabelEncode:
learn_empty_box: False
merge_no_span_structure: *merge_no_span_structure
replace_empty_cell_token: False
loc_reg_num: *loc_reg_num
max_text_length: *max_text_length
- TableBoxEncode:
in_box_format: *box_format
out_box_format: *box_format
- ResizeTableImage:
max_len: 488
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- PaddingTableImage:
size: [488, 488]
- ToCHWImage:
- KeepKeys:
keep_keys: [ 'image', 'structure', 'bboxes', 'bbox_masks', 'shape' ]
loader:
shuffle: True
batch_size_per_card: 48
drop_last: True
num_workers: 1
Eval:
dataset:
name: PubTabDataSet
data_dir: ./train_data/pubtabnet/test/
label_file_list: [./train_data/pubtabnet/test.jsonl]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- TableLabelEncode:
learn_empty_box: False
merge_no_span_structure: *merge_no_span_structure
replace_empty_cell_token: False
loc_reg_num: *loc_reg_num
max_text_length: *max_text_length
- TableBoxEncode:
in_box_format: *box_format
out_box_format: *box_format
- ResizeTableImage:
max_len: 488
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- PaddingTableImage:
size: [488, 488]
- ToCHWImage:
- KeepKeys:
keep_keys: [ 'image', 'structure', 'bboxes', 'bbox_masks', 'shape' ]
loader:
shuffle: False
drop_last: False
batch_size_per_card: 48
num_workers: 1
===========================train_params===========================
model_name:slanet
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:fp32
Global.epoch_num:lite_train_lite_infer=3|whole_train_whole_infer=50
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=16|whole_train_whole_infer=128
Global.pretrained_model:./pretrain_models/en_ppstructure_mobile_v2.0_SLANet_train/best_accuracy
train_model_name:latest
train_infer_img_dir:./ppstructure/docs/table/table.jpg
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/slanet/SLANet.yml -o Global.print_batch_step=1 Train.loader.shuffle=false
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:null
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.checkpoints:
norm_export:tools/export_model.py -c test_tipc/configs/slanet/SLANet.yml -o
quant_export:
fpgm_export:
distill_export:null
export1:null
export2:null
##
infer_model:./inference/en_ppstructure_mobile_v2.0_SLANet_train
infer_export:null
infer_quant:False
inference:ppstructure/table/predict_table.py --det_model_dir=./inference/en_ppocr_mobile_v2.0_table_det_infer --rec_model_dir=./inference/en_ppocr_mobile_v2.0_table_rec_infer --rec_char_dict_path=./ppocr/utils/dict/table_dict.txt --table_char_dict_path=./ppocr/utils/dict/table_structure_dict.txt --image_dir=./ppstructure/docs/table/table.jpg --det_limit_side_len=736 --det_limit_type=min --output ./output/table
--use_gpu:True|False
--enable_mkldnn:False
--cpu_threads:6
--rec_batch_num:1
--use_tensorrt:False
--precision:fp32
--table_model_dir:
--image_dir:./ppstructure/docs/table/table.jpg
null:null
--benchmark:False
null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,488,488]}]
===========================train_benchmark_params==========================
batch_size:32
fp_items:fp32|fp16
epoch:2
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
...@@ -108,6 +108,7 @@ if [ ${MODE} = "benchmark_train" ];then ...@@ -108,6 +108,7 @@ if [ ${MODE} = "benchmark_train" ];then
fi fi
if [ ${model_name} == "layoutxlm_ser" ] || [ ${model_name} == "vi_layoutxlm_ser" ]; then if [ ${model_name} == "layoutxlm_ser" ] || [ ${model_name} == "vi_layoutxlm_ser" ]; then
pip install -r ppstructure/kie/requirements.txt pip install -r ppstructure/kie/requirements.txt
pip install opencv-python -U
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/ppstructure/dataset/XFUND.tar --no-check-certificate wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/ppstructure/dataset/XFUND.tar --no-check-certificate
cd ./train_data/ && tar xf XFUND.tar cd ./train_data/ && tar xf XFUND.tar
# expand gt.txt 10 times # expand gt.txt 10 times
...@@ -139,6 +140,13 @@ if [ ${MODE} = "lite_train_lite_infer" ];then ...@@ -139,6 +140,13 @@ if [ ${MODE} = "lite_train_lite_infer" ];then
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar --no-check-certificate wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar --no-check-certificate
cd ./inference/ && tar xf en_ppocr_mobile_v2.0_table_det_infer.tar && tar xf en_ppocr_mobile_v2.0_table_rec_infer.tar && cd ../ cd ./inference/ && tar xf en_ppocr_mobile_v2.0_table_det_infer.tar && tar xf en_ppocr_mobile_v2.0_table_rec_infer.tar && cd ../
fi fi
if [ ${model_name} == "slanet" ];then
wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/en_ppstructure_mobile_v2.0_SLANet_train.tar --no-check-certificate
cd ./pretrain_models/ && tar xf en_ppstructure_mobile_v2.0_SLANet_train.tar && cd ../
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar --no-check-certificate
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar --no-check-certificate
cd ./inference/ && tar xf en_ppocr_mobile_v2.0_table_det_infer.tar && tar xf en_ppocr_mobile_v2.0_table_rec_infer.tar && cd ../
fi
if [[ ${model_name} =~ "det_r50_db_plusplus" ]];then if [[ ${model_name} =~ "det_r50_db_plusplus" ]];then
wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/ResNet50_dcn_asf_synthtext_pretrained.pdparams --no-check-certificate wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/ResNet50_dcn_asf_synthtext_pretrained.pdparams --no-check-certificate
fi fi
...@@ -223,6 +231,7 @@ if [ ${MODE} = "lite_train_lite_infer" ];then ...@@ -223,6 +231,7 @@ if [ ${MODE} = "lite_train_lite_infer" ];then
fi fi
if [ ${model_name} == "layoutxlm_ser" ] || [ ${model_name} == "vi_layoutxlm_ser" ]; then if [ ${model_name} == "layoutxlm_ser" ] || [ ${model_name} == "vi_layoutxlm_ser" ]; then
pip install -r ppstructure/kie/requirements.txt pip install -r ppstructure/kie/requirements.txt
pip install opencv-python -U
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/ppstructure/dataset/XFUND.tar --no-check-certificate wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/ppstructure/dataset/XFUND.tar --no-check-certificate
cd ./train_data/ && tar xf XFUND.tar cd ./train_data/ && tar xf XFUND.tar
cd ../ cd ../
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册