From 6735cced20bf905b88bb9fe9d63f811cca896481 Mon Sep 17 00:00:00 2001
From: zhiminzhang0830 <452516515@qq.com>
Date: Thu, 29 Sep 2022 14:21:47 +0800
Subject: [PATCH] =?UTF-8?q?=E6=B7=BB=E5=8A=A0RFL=E6=96=87=E6=A1=A3?=
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
---
doc/doc_ch/algorithm_overview.md | 2 +
doc/doc_ch/algorithm_rec_rfl.md | 161 ++++++++++++++++++++++++++++
doc/doc_en/algorithm_overview_en.md | 3 +-
doc/doc_en/algorithm_rec_rfl_en.md | 143 ++++++++++++++++++++++++
4 files changed, 308 insertions(+), 1 deletion(-)
create mode 100644 doc/doc_ch/algorithm_rec_rfl.md
create mode 100644 doc/doc_en/algorithm_rec_rfl_en.md
diff --git a/doc/doc_ch/algorithm_overview.md b/doc/doc_ch/algorithm_overview.md
index ecb0e9df..4351fdbf 100755
--- a/doc/doc_ch/algorithm_overview.md
+++ b/doc/doc_ch/algorithm_overview.md
@@ -79,6 +79,7 @@ PaddleOCR将**持续新增**支持OCR领域前沿算法与模型,**欢迎广
- [x] [VisionLAN](./algorithm_rec_visionlan.md)
- [x] [SPIN](./algorithm_rec_spin.md)
- [x] [RobustScanner](./algorithm_rec_robustscanner.md)
+- [x] [RFL](./algorithm_rec_rfl.md)
参考[DTRB](https://arxiv.org/abs/1904.01906)[3]文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
@@ -102,6 +103,7 @@ PaddleOCR将**持续新增**支持OCR领域前沿算法与模型,**欢迎广
|VisionLAN|Resnet45| 90.30% | rec_r45_visionlan | [训练模型](https://paddleocr.bj.bcebos.com/rec_r45_visionlan_train.tar) |
|SPIN|ResNet32| 90.00% | rec_r32_gaspin_bilstm_att | coming soon |
|RobustScanner|ResNet31| 87.77% | rec_r31_robustscanner | coming soon |
+|RFL|ResNetRFL| 88.63% | rec_resnet_rfl_att | [训练模型](https://paddleocr.bj.bcebos.com/contribution/rec_resnet_rfl.tar) |
diff --git a/doc/doc_ch/algorithm_rec_rfl.md b/doc/doc_ch/algorithm_rec_rfl.md
new file mode 100644
index 00000000..5135e77a
--- /dev/null
+++ b/doc/doc_ch/algorithm_rec_rfl.md
@@ -0,0 +1,161 @@
+# 场景文本识别算法-RFL
+
+- [1. 算法简介](#1)
+- [2. 环境配置](#2)
+- [3. 模型训练、评估、预测](#3)
+ - [3.1 训练](#3-1)
+ - [3.2 评估](#3-2)
+ - [3.3 预测](#3-3)
+- [4. 推理部署](#4)
+ - [4.1 Python推理](#4-1)
+ - [4.2 C++推理](#4-2)
+ - [4.3 Serving服务化部署](#4-3)
+ - [4.4 更多推理部署](#4-4)
+- [5. FAQ](#5)
+
+
+## 1. 算法简介
+
+论文信息:
+> [Reciprocal Feature Learning via Explicit and Implicit Tasks in Scene Text Recognition](https://arxiv.org/abs/2105.06229.pdf)
+> Hui Jiang, Yunlu Xu, Zhanzhan Cheng, Shiliang Pu, Yi Niu, Wenqi Ren, Fei Wu, and Wenming Tan
+> ICDAR, 2021
+
+
+
+`RFL`使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法复现效果如下:
+
+|模型|骨干网络|配置文件|Acc|下载链接|
+| --- | --- | --- | --- | --- |
+|RFL-CNT|ResNetRFL|[rec_resnet_rfl_visual.yml](../../configs/rec/rec_resnet_rfl_visual.yml)|93.40%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/rec_resnet_rfl.tar)|
+|RFL-Att|ResNetRFL|[rec_resnet_rfl_att.yml](../../configs/rec/rec_resnet_rfl_att.yml)|88.63%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/rec_resnet_rfl.tar)|
+
+
+## 2. 环境配置
+请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。
+
+
+
+## 3. 模型训练、评估、预测
+
+
+### 3.1 模型训练
+
+请参考[文本识别训练教程](./recognition.md)。PaddleOCR对代码进行了模块化,训练`RFL`识别模型时需要**更换配置文件**为`RFL`的[配置文件](../../configs/rec/rec_resnet_rfl_att.yml)。
+
+#### 启动训练
+
+
+具体地,在完成数据准备后,便可以启动训练,训练命令如下:
+```shell
+#step1:训练CNT分支
+#单卡训练(训练周期长,不建议)
+python3 tools/train.py -c configs/rec/rec_resnet_rfl_visual.yml
+
+#多卡训练,通过--gpus参数指定卡号
+python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_resnet_rfl_visual.yml
+
+#step2:联合训练CNT和Att分支,注意将pretrained_model的路径设置为本地路径。
+#单卡训练(训练周期长,不建议)
+python3 tools/train.py -c configs/rec/rec_resnet_rfl_att.yml -o Global.pretrained_model=./output/rec/rec_resnet_rfl_visual/best_accuracy
+
+#多卡训练,通过--gpus参数指定卡号
+python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_resnet_rfl_att.yml -o Global.pretrained_model=./output/rec/rec_resnet_rfl_visual/best_accuracy
+```
+
+
+### 3.2 评估
+
+可下载已训练完成的[模型文件](https://paddleocr.bj.bcebos.com/contribution/rec_resnet_rfl.tar),使用如下命令进行评估:
+
+```shell
+# 注意将pretrained_model的路径设置为本地路径。
+python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_resnet_rfl_att.yml -o Global.pretrained_model=./output/rec/rec_resnet_rfl_att/best_accuracy
+```
+
+
+### 3.3 预测
+
+使用如下命令进行单张图片预测:
+```shell
+# 注意将pretrained_model的路径设置为本地路径。
+python3 tools/infer_rec.py -c configs/rec/rec_resnet_rfl_att.yml -o Global.infer_img='./doc/imgs_words_en/word_10.png' Global.pretrained_model=./output/rec/rec_resnet_rfl_att/best_accuracy
+# 预测文件夹下所有图像时,可修改infer_img为文件夹,如 Global.infer_img='./doc/imgs_words_en/'。
+```
+
+
+
+## 4. 推理部署
+
+
+### 4.1 Python推理
+首先将训练得到best模型,转换成inference model。这里以训练完成的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/contribution/rec_resnet_rfl.tar) ),可以使用如下命令进行转换:
+
+```shell
+# 注意将pretrained_model的路径设置为本地路径。
+python3 tools/export_model.py -c configs/rec/rec_resnet_rfl_att.yml -o Global.pretrained_model=./output/rec/rec_resnet_rfl_att/best_accuracy Global.save_inference_dir=./inference/rec_resnet_rfl_att/
+```
+**注意:**
+- 如果您是在自己的数据集上训练的模型,并且调整了字典文件,请注意修改配置文件中的`character_dict_path`是否是所需要的字典文件。
+- 如果您修改了训练时的输入大小,请修改`tools/export_model.py`文件中的对应RFL的`infer_shape`。
+
+转换成功后,在目录下有三个文件:
+```
+/inference/rec_resnet_rfl_att/
+ ├── inference.pdiparams # 识别inference模型的参数文件
+ ├── inference.pdiparams.info # 识别inference模型的参数信息,可忽略
+ └── inference.pdmodel # 识别inference模型的program文件
+```
+
+执行如下命令进行模型推理:
+
+```shell
+python3 tools/infer/predict_rec.py --image_dir='./doc/imgs_words_en/word_10.png' --rec_model_dir='./inference/rec_resnet_rfl_att/' --rec_algorithm='RFL' --rec_image_shape='1,32,100'
+# 预测文件夹下所有图像时,可修改image_dir为文件夹,如 --image_dir='./doc/imgs_words_en/'。
+```
+
+![](../imgs_words_en/word_10.png)
+
+执行命令后,上面图像的预测结果(识别的文本和得分)会打印到屏幕上,示例如下:
+结果如下:
+```shell
+Predicts of ./doc/imgs_words_en/word_10.png:('pain', 0.9999927282333374)
+```
+
+**注意**:
+
+- 训练上述模型采用的图像分辨率是[1,32,100],需要通过参数`rec_image_shape`设置为您训练时的识别图像形状。
+- 在推理时需要设置参数`rec_char_dict_path`指定字典,如果您修改了字典,请修改该参数为您的字典文件。
+- 如果您修改了预处理方法,需修改`tools/infer/predict_rec.py`中RFL的预处理为您的预处理方法。
+
+
+
+### 4.2 C++推理部署
+
+由于C++预处理后处理还未支持RFL,所以暂未支持
+
+
+### 4.3 Serving服务化部署
+
+暂不支持
+
+
+### 4.4 更多推理部署
+
+暂不支持
+
+
+## 5. FAQ
+
+
+## 引用
+
+```bibtex
+@article{2021Reciprocal,
+ title = {Reciprocal Feature Learning via Explicit and Implicit Tasks in Scene Text Recognition},
+ author = {Jiang, H. and Xu, Y. and Cheng, Z. and Pu, S. and Niu, Y. and Ren, W. and Wu, F. and Tan, W. },
+ booktitle = {ICDAR},
+ year = {2021},
+ url = {https://arxiv.org/abs/2105.06229}
+}
+```
diff --git a/doc/doc_en/algorithm_overview_en.md b/doc/doc_en/algorithm_overview_en.md
index bca22f78..f7ef7ad4 100755
--- a/doc/doc_en/algorithm_overview_en.md
+++ b/doc/doc_en/algorithm_overview_en.md
@@ -76,6 +76,7 @@ Supported text recognition algorithms (Click the link to get the tutorial):
- [x] [VisionLAN](./algorithm_rec_visionlan_en.md)
- [x] [SPIN](./algorithm_rec_spin_en.md)
- [x] [RobustScanner](./algorithm_rec_robustscanner_en.md)
+- [x] [RFL](./algorithm_rec_rfl_en.md)
Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation result of these above text recognition (using MJSynth and SynthText for training, evaluate on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE) is as follow:
@@ -99,7 +100,7 @@ Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation r
|VisionLAN|Resnet45| 90.30% | rec_r45_visionlan | [trained model](https://paddleocr.bj.bcebos.com/rec_r45_visionlan_train.tar) |
|SPIN|ResNet32| 90.00% | rec_r32_gaspin_bilstm_att | coming soon |
|RobustScanner|ResNet31| 87.77% | rec_r31_robustscanner | coming soon |
-
+|RFL|ResNetRFL| 88.63% | rec_resnet_rfl_att | [trained model](https://paddleocr.bj.bcebos.com/contribution/rec_resnet_rfl.tar) |
diff --git a/doc/doc_en/algorithm_rec_rfl_en.md b/doc/doc_en/algorithm_rec_rfl_en.md
new file mode 100644
index 00000000..8f0adfbe
--- /dev/null
+++ b/doc/doc_en/algorithm_rec_rfl_en.md
@@ -0,0 +1,143 @@
+# RFL
+
+- [1. Introduction](#1)
+- [2. Environment](#2)
+- [3. Model Training / Evaluation / Prediction](#3)
+ - [3.1 Training](#3-1)
+ - [3.2 Evaluation](#3-2)
+ - [3.3 Prediction](#3-3)
+- [4. Inference and Deployment](#4)
+ - [4.1 Python Inference](#4-1)
+ - [4.2 C++ Inference](#4-2)
+ - [4.3 Serving](#4-3)
+ - [4.4 More](#4-4)
+- [5. FAQ](#5)
+
+
+## 1. Introduction
+
+Paper:
+> [Reciprocal Feature Learning via Explicit and Implicit Tasks in Scene Text Recognition](https://arxiv.org/abs/2105.06229.pdf)
+> Hui Jiang, Yunlu Xu, Zhanzhan Cheng, Shiliang Pu, Yi Niu, Wenqi Ren, Fei Wu, and Wenming Tan
+> ICDAR, 2021
+
+Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets, the algorithm reproduction effect is as follows:
+
+|Model|Backbone|config|Acc|Download link|
+| --- | --- | --- | --- | --- |
+|RFL-CNT|ResNetRFL|[rec_resnet_rfl_visual.yml](../../configs/rec/rec_resnet_rfl_visual.yml)|93.40%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/rec_resnet_rfl.tar)|
+|RFL-Att|ResNetRFL|[rec_resnet_rfl_att.yml](../../configs/rec/rec_resnet_rfl_att.yml)|88.63%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/rec_resnet_rfl.tar)|
+
+
+## 2. Environment
+Please refer to ["Environment Preparation"](./environment_en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone_en.md) to clone the project code.
+
+
+
+## 3. Model Training / Evaluation / Prediction
+
+Please refer to [Text Recognition Tutorial](./recognition_en.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
+
+Training:
+
+Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
+
+```
+#step1:train the CNT branch
+#Single GPU training (long training period, not recommended)
+python3 tools/train.py -c configs/rec/rec_resnet_rfl_visual.yml
+
+#Multi GPU training, specify the gpu number through the --gpus parameter
+python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_resnet_rfl_visual.yml
+
+#step2:joint training of CNT and Att branches
+#Single GPU training (long training period, not recommended)
+python3 tools/train.py -c configs/rec/rec_resnet_rfl_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
+
+#Multi GPU training, specify the gpu number through the --gpus parameter
+python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_resnet_rfl_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
+
+
+```
+
+Evaluation:
+
+```
+# GPU evaluation
+python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_resnet_rfl_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
+```
+
+Prediction:
+
+```
+# The configuration file used for prediction must match the training
+python3 tools/infer_rec.py -c configs/rec/rec_resnet_rfl_att.yml -o Global.infer_img='./doc/imgs_words_en/word_10.png' Global.pretrained_model={path/to/weights}/best_accuracy
+```
+
+
+## 4. Inference and Deployment
+
+
+### 4.1 Python Inference
+First, the model saved during the RFL text recognition training process is converted into an inference model. ( [Model download link](https://paddleocr.bj.bcebos.com/contribution/rec_resnet_rfl.tar)) ), you can use the following command to convert:
+
+```
+python3 tools/export_model.py -c configs/rec/rec_resnet_rfl_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.save_inference_dir=./inference/rec_resnet_rfl_att
+```
+
+**Note:**
+- If you are training the model on your own dataset and have modified the dictionary file, please pay attention to modify the `character_dict_path` in the configuration file to the modified dictionary file.
+- If you modified the input size during training, please modify the `infer_shape` corresponding to NRTR in the `tools/export_model.py` file.
+
+After the conversion is successful, there are three files in the directory:
+```
+/inference/rec_resnet_rfl_att/
+ ├── inference.pdiparams
+ ├── inference.pdiparams.info
+ └── inference.pdmodel
+```
+
+
+For RFL text recognition model inference, the following commands can be executed:
+
+```
+python3 tools/infer/predict_rec.py --image_dir='./doc/imgs_words_en/word_10.png' --rec_model_dir='./inference/rec_resnet_rfl_att/' --rec_algorithm='RFL' --rec_image_shape='1,32,100'
+```
+
+![](../imgs_words_en/word_10.png)
+
+After executing the command, the prediction result (recognized text and score) of the image above is printed to the screen, an example is as follows:
+The result is as follows:
+```shell
+Predicts of ./doc/imgs_words_en/word_10.png:('pain', 0.9999927282333374)
+```
+
+
+### 4.2 C++ Inference
+
+Not supported
+
+
+### 4.3 Serving
+
+Not supported
+
+
+### 4.4 More
+
+Not supported
+
+
+## 5. FAQ
+
+## Citation
+
+```bibtex
+@article{2021Reciprocal,
+ title = {Reciprocal Feature Learning via Explicit and Implicit Tasks in Scene Text Recognition},
+ author = {Jiang, H. and Xu, Y. and Cheng, Z. and Pu, S. and Niu, Y. and Ren, W. and Wu, F. and Tan, W. },
+ booktitle = {ICDAR},
+ year = {2021},
+ url = {https://arxiv.org/abs/2105.06229}
+}
+```
--
GitLab