diff --git a/doc/doc_ch/code_and_doc.md b/doc/doc_ch/code_and_doc.md
new file mode 100644
index 0000000000000000000000000000000000000000..b1d8b4b36bd45fc1574b5049ce9af808a00b7574
--- /dev/null
+++ b/doc/doc_ch/code_and_doc.md
@@ -0,0 +1,324 @@
+# 附录
+
+本附录包含了Python、文档规范以及Pull Request流程,请各位开发者遵循相关内容
+
+- [附录1:Python代码规范](#附录1)
+
+- [附录2:文档规范](#附录2)
+
+- [附录3:Pull Request说明](#附录3)
+
+
+
+## 附录1:Python代码规范
+
+PaddleOCR的Python代码遵循 [PEP8规范](https://www.python.org/dev/peps/pep-0008/),其中一些关注的重点包括如下内容
+
+- 空格
+
+ - 空格应该加在逗号、分号、冒号前,而非他们的后面
+
+ ```python
+ # 正确:
+ print(x, y)
+
+ # 错误:
+ print(x , y)
+ ```
+
+ - 在函数中指定关键字参数或默认参数值时, 不要在其两侧使用空格
+
+ ```python
+ # 正确:
+ def complex(real, imag=0.0)
+ # 错误:
+ def complex(real, imag = 0.0)
+ ```
+
+- 注释
+
+ - 行内注释:行内注释使用 `#` 号表示,在代码与 `#` 之间需要空两个空格, `#` 与注释之间应当空一个空格,例如
+
+ ```python
+ x = x + 1 # Compensate for border
+ ```
+
+ - 函数和方法:每个函数的定义后的描述应该包括以下内容:
+
+ - 函数描述:函数的作用,输入输出的
+
+ - Args:每个参数的名字以及对该参数的描述
+ - Returns:返回值的含义和类型
+
+ ```python
+ def fetch_bigtable_rows(big_table, keys, other_silly_variable=None):
+ """Fetches rows from a Bigtable.
+
+ Retrieves rows pertaining to the given keys from the Table instance
+ represented by big_table. Silly things may happen if
+ other_silly_variable is not None.
+
+ Args:
+ big_table: An open Bigtable Table instance.
+ keys: A sequence of strings representing the key of each table row
+ to fetch.
+ other_silly_variable: Another optional variable, that has a much
+ longer name than the other args, and which does nothing.
+
+ Returns:
+ A dict mapping keys to the corresponding table row data
+ fetched. Each row is represented as a tuple of strings. For
+ example:
+
+ {'Serak': ('Rigel VII', 'Preparer'),
+ 'Zim': ('Irk', 'Invader'),
+ 'Lrrr': ('Omicron Persei 8', 'Emperor')}
+
+ If a key from the keys argument is missing from the dictionary,
+ then that row was not found in the table.
+ """
+ pass
+ ```
+
+
+
+## 附录2:文档规范
+
+### 2.1 总体说明
+
+- 文档位置:如果您增加的新功能可以补充在原有的Markdown文件中,请**不要重新新建**一个文件。如果您对添加的位置不清楚,可以先PR代码,然后在commit中询问官方人员。
+
+- 新增Markdown文档名称:使用英文描述文档内容,一般由小写字母与下划线组合而成,例如 `add_new_algorithm.md`
+
+- 新增Markdown文档格式:目录 - 正文 - FAQ
+
+ > 目录生成方法可以使用 [此网站](https://ecotrust-canada.github.io/markdown-toc/) 将md内容复制之后自动提取目录,然后在md文件的每个标题前添加 ``
+
+- 中英双语:任何对文档的改动或新增都需要分别在中文和英文文档上进行。
+
+### 2.2 格式规范
+
+- 标题格式:文档标题格式按照:阿拉伯数字小数点组合 - 空格 - 标题的格式(例如 `2.1 XXXX` , `2. XXXX`)
+
+- 代码块:通过代码块格式展示需要运行的代码,在代码块前描述命令参数的含义。例如:
+
+ > 检测+方向分类器+识别全流程:设置方向分类器参数 `--use_angle_cls true` 后可对竖排文本进行识别。
+ >
+ > ```
+ > paddleocr --image_dir ./imgs/11.jpg --use_angle_cls true
+ > ```
+
+- 变量引用:如果在行内引用到代码变量或命令参数,需要用行内代码表示,例如上方 `--use_angle_cls true` ,并在前后各空一格
+
+- 补充说明:通过引用格式 `>` 补充说明,或对注意事项进行说明
+
+- 图片:如果在说明文档中增加了图片,请规范图片的命名形式(描述图片内容),并将图片添加在 `doc/` 下
+
+
+
+## 附录3:Pull Request说明
+
+### 3.1 PaddleOCR分支说明
+
+PaddleOCR未来将维护2种分支,分别为:
+
+- release/x.x系列分支:为稳定的发行版本分支,也是默认分支。PaddleOCR会根据功能更新情况发布新的release分支,同时适配Paddle的release版本。随着版本迭代,release/x.x系列分支会越来越多,默认维护最新版本的release分支。
+- dygraph分支:为开发分支,适配Paddle动态图的dygraph版本,主要用于开发新功能。如果有同学需要进行二次开发,请选择dygraph分支。为了保证dygraph分支能在需要的时候拉出release/x.x分支,dygraph分支的代码只能使用Paddle最新release分支中有效的api。也就是说,如果Paddle dygraph分支中开发了新的api,但尚未出现在release分支代码中,那么请不要在PaddleOCR中使用。除此之外,对于不涉及api的性能优化、参数调整、策略更新等,都可以正常进行开发。
+
+PaddleOCR的历史分支,未来将不再维护。考虑到一些同学可能仍在使用,这些分支还会继续保留:
+
+- develop分支:这个分支曾用于静态图的开发与测试,目前兼容>=1.7版本的Paddle。如果有特殊需求,要适配旧版本的Paddle,那还可以使用这个分支,但除了修复bug外不再更新代码。
+
+PaddleOCR欢迎大家向repo中积极贡献代码,下面给出一些贡献代码的基本流程。
+
+### 3.2 PaddleOCR代码提交流程与规范
+
+> 如果你熟悉Git使用,可以直接跳转到 [3.2.10 提交代码的一些约定](#提交代码的一些约定)
+
+#### 3.2.1 创建你的 `远程仓库`
+
+- 在PaddleOCR的 [GitHub首页](https://github.com/PaddlePaddle/PaddleOCR),点击左上角 `Fork` 按钮,在你的个人目录下创建 `远程仓库`,比如`https://github.com/{your_name}/PaddleOCR`。
+
+
+
+- 将 `远程仓库` Clone到本地
+
+```
+# 拉取develop分支的代码
+git clone https://github.com/{your_name}/PaddleOCR.git -b dygraph
+cd PaddleOCR
+```
+
+> 多数情况下clone失败是由于网络原因,请稍后重试或配置代理
+
+#### 3.2.2 和 `远程仓库` 建立连接
+
+首先查看当前 `远程仓库` 的信息。
+
+```
+git remote -v
+# origin https://github.com/{your_name}/PaddleOCR.git (fetch)
+# origin https://github.com/{your_name}/PaddleOCR.git (push)
+```
+
+只有clone的 `远程仓库` 的信息,也就是自己用户名下的 PaddleOCR,接下来我们创建一个原始 PaddleOCR 仓库的远程主机,命名为 upstream。
+
+```
+git remote add upstream https://github.com/PaddlePaddle/PaddleOCR.git
+```
+
+使用 `git remote -v` 查看当前 `远程仓库` 的信息,输出如下,发现包括了origin和upstream 2个 `远程仓库` 。
+
+```
+origin https://github.com/{your_name}/PaddleOCR.git (fetch)
+origin https://github.com/{your_name}/PaddleOCR.git (push)
+upstream https://github.com/PaddlePaddle/PaddleOCR.git (fetch)
+upstream https://github.com/PaddlePaddle/PaddleOCR.git (push)
+```
+
+这主要是为了后续在提交pull request(PR)时,始终保持本地仓库最新。
+
+#### 3.2.3 创建本地分支
+
+可以基于当前分支创建新的本地分支,命令如下。
+
+```
+git checkout -b new_branch
+```
+
+也可以基于远程或者上游的分支创建新的分支,命令如下。
+
+```
+# 基于用户远程仓库(origin)的develop创建new_branch分支
+git checkout -b new_branch origin/develop
+# 基于上游远程仓库(upstream)的develop创建new_branch分支
+# 如果需要从upstream创建新的分支,需要首先使用git fetch upstream获取上游代码
+git checkout -b new_branch upstream/develop
+```
+
+最终会显示切换到新的分支,输出信息如下
+
+```
+Branch new_branch set up to track remote branch develop from upstream.
+Switched to a new branch 'new_branch'
+```
+
+#### 3.2.4 使用pre-commit勾子
+
+Paddle 开发人员使用 pre-commit 工具来管理 Git 预提交钩子。 它可以帮助我们格式化源代码(C++,Python),在提交(commit)前自动检查一些基本事宜(如每个文件只有一个 EOL,Git 中不要添加大文件等)。
+
+pre-commit测试是 Travis-CI 中单元测试的一部分,不满足钩子的 PR 不能被提交到 PaddleOCR,首先安装并在当前目录运行它:
+
+```
+pip install pre-commit
+pre-commit install
+```
+
+ > 1. Paddle 使用 clang-format 来调整 C/C++ 源代码格式,请确保 `clang-format` 版本在 3.8 以上。
+ >
+ > 2. 通过pip install pre-commit和conda install -c conda-forge pre-commit安装的yapf稍有不同的,PaddleOCR 开发人员使用的是 `pip install pre-commit`。
+
+#### 3.2.5 修改与提交代码
+
+ 假设对PaddleOCR的 `README.md` 做了一些修改,可以通过 `git status` 查看改动的文件,然后使用 `git add` 添加改动文件。
+
+```
+git status # 查看改动文件
+git add README.md
+pre-commit
+```
+
+重复上述步骤,直到pre-comit格式检查不报错。如下所示。
+
+[](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.3/docs/images/quick_start/community/003_precommit_pass.png)
+
+使用下面的命令完成提交。
+
+```
+git commit -m "your commit info"
+```
+
+#### 3.2.6 保持本地仓库最新
+
+获取 upstream 的最新代码并更新当前分支。这里的upstream来自于2.2节的`和远程仓库建立连接`部分。
+
+```
+git fetch upstream
+# 如果是希望提交到其他分支,则需要从upstream的其他分支pull代码,这里是develop
+git pull upstream develop
+```
+
+#### 3.2.7 push到远程仓库
+
+```
+git push origin new_branch
+```
+
+#### 3.2.7 提交Pull Request
+
+点击new pull request,选择本地分支和目标分支,如下图所示。在PR的描述说明中,填写该PR所完成的功能。接下来等待review,如果有需要修改的地方,参照上述步骤更新 origin 中的对应分支即可。
+
+
+
+#### 3.2.8 签署CLA协议和通过单元测试
+
+- 签署CLA 在首次向PaddlePaddle提交Pull Request时,您需要您签署一次CLA(Contributor License Agreement)协议,以保证您的代码可以被合入,具体签署方式如下:
+
+ 1. 请您查看PR中的Check部分,找到license/cla,并点击右侧detail,进入CLA网站
+
+ 2. 点击CLA网站中的“Sign in with GitHub to agree”,点击完成后将会跳转回您的Pull Request页面
+
+#### 3.2.9 删除分支
+
+- 删除远程分支
+
+ 在 PR 被 merge 进主仓库后,我们可以在 PR 的页面删除远程仓库的分支。
+
+ 也可以使用 `git push origin :分支名` 删除远程分支,如:
+
+ ```
+ git push origin :new_branch
+ ```
+
+- 删除本地分支
+
+ ```
+ # 切换到develop分支,否则无法删除当前分支
+ git checkout develop
+
+ # 删除new_branch分支
+ git branch -D new_branch
+ ```
+
+
+
+#### 3.2.10 提交代码的一些约定
+
+为了使官方维护人员在评审代码时更好地专注于代码本身,请您每次提交代码时,遵守以下约定:
+
+1)请保证Travis-CI 中单元测试能顺利通过。如果没过,说明提交的代码存在问题,官方维护人员一般不做评审。
+
+2)提交Pull Request前:
+
+- 请注意commit的数量。
+
+ 原因:如果仅仅修改一个文件但提交了十几个commit,每个commit只做了少量的修改,这会给评审人带来很大困扰。评审人需要逐一查看每个commit才能知道做了哪些修改,且不排除commit之间的修改存在相互覆盖的情况。
+
+ 建议:每次提交时,保持尽量少的commit,可以通过git commit --amend补充上次的commit。对已经Push到远程仓库的多个commit,可以参考[squash commits after push](https://stackoverflow.com/questions/5667884/how-to-squash-commits-in-git-after-they-have-been-pushed)。
+
+- 请注意每个commit的名称:应能反映当前commit的内容,不能太随意。
+
+
+3)如果解决了某个Issue的问题,请在该Pull Request的第一个评论框中加上:fix #issue_number,这样当该Pull Request被合并后,会自动关闭对应的Issue。关键词包括:close, closes, closed, fix, fixes, fixed, resolve, resolves, resolved,请选择合适的词汇。详细可参考[Closing issues via commit messages](https://help.github.com/articles/closing-issues-via-commit-messages)。
+
+此外,在回复评审人意见时,请您遵守以下约定:
+
+1)官方维护人员的每一个review意见都希望得到回复,这样会更好地提升开源社区的贡献。
+
+- 对评审意见同意且按其修改完的,给个简单的Done即可;
+- 对评审意见不同意的,请给出您自己的反驳理由。
+
+2)如果评审意见比较多:
+
+- 请给出总体的修改情况。
+- 请采用`start a review`进行回复,而非直接回复的方式。原因是每个回复都会发送一封邮件,会造成邮件灾难。
\ No newline at end of file
diff --git a/doc/doc_ch/detection.md b/doc/doc_ch/detection.md
index cfc9d52bf280400982a9fcd9941ddc4cce3f5e5c..f76ae7f842fb6b7002e084be59dc7ccb31f39771 100644
--- a/doc/doc_ch/detection.md
+++ b/doc/doc_ch/detection.md
@@ -247,3 +247,7 @@ Q1: 训练模型转inference 模型之后预测效果不一致?
**A**:此类问题出现较多,问题多是trained model预测时候的预处理、后处理参数和inference model预测的时候的预处理、后处理参数不一致导致的。以det_mv3_db.yml配置文件训练的模型为例,训练模型、inference模型预测结果不一致问题解决方式如下:
- 检查[trained model预处理](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/configs/det/det_mv3_db.yml#L116),和[inference model的预测预处理](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/tools/infer/predict_det.py#L42)函数是否一致。算法在评估的时候,输入图像大小会影响精度,为了和论文保持一致,训练icdar15配置文件中将图像resize到[736, 1280],但是在inference model预测的时候只有一套默认参数,会考虑到预测速度问题,默认限制图像最长边为960做resize的。训练模型预处理和inference模型的预处理函数位于[ppocr/data/imaug/operators.py](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/ppocr/data/imaug/operators.py#L147)
- 检查[trained model后处理](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/configs/det/det_mv3_db.yml#L51),和[inference 后处理参数](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/tools/infer/utility.py#L50)是否一致。
+
+Q1: 训练EAST模型提示找不到lanms库?
+
+**A**:执行pip3 install lanms-nova 即可。
diff --git a/doc/doc_ch/inference.md b/doc/doc_ch/inference.md
index 4e0f1d131e2547f0d4a8bdf35c0f4a6f8bf2e7a3..c964d23117d022531d1181455a7b1c6c1d08ccae 100755
--- a/doc/doc_ch/inference.md
+++ b/doc/doc_ch/inference.md
@@ -34,6 +34,8 @@ inference 模型(`paddle.jit.save`保存的模型)
- [1. 超轻量中文OCR模型推理](#超轻量中文OCR模型推理)
- [2. 其他模型推理](#其他模型推理)
+- [六、参数解释](参数解释)
+
## 一、训练模型转inference模型
@@ -394,3 +396,127 @@ python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_10.jpg" --d
执行命令后,识别结果图像如下:

+
+
+
+
+# 六、参数解释
+
+更多关于预测过程的参数解释如下所示。
+
+* 全局信息
+
+| 参数名称 | 类型 | 默认值 | 含义 |
+| :--: | :--: | :--: | :--: |
+| image_dir | str | 无,必须显式指定 | 图像或者文件夹路径 |
+| vis_font_path | str | "./doc/fonts/simfang.ttf" | 用于可视化的字体路径 |
+| drop_score | float | 0.5 | 识别得分小于该值的结果会被丢弃,不会作为返回结果 |
+| use_pdserving | bool | False | 是否使用Paddle Serving进行预测 |
+| warmup | bool | False | 是否开启warmup,在统计预测耗时的时候,可以使用这种方法 |
+| draw_img_save_dir | str | "./inference_results" | 系统串联预测OCR结果的保存文件夹 |
+| save_crop_res | bool | False | 是否保存OCR的识别文本图像 |
+| crop_res_save_dir | str | "./output" | 保存OCR识别出来的文本图像路径 |
+| use_mp | bool | False | 是否开启多进程预测 |
+| total_process_num | int | 6 | 开启的进城数,`use_mp`为`True`时生效 |
+| process_id | int | 0 | 当前进程的id号,无需自己修改 |
+| benchmark | bool | False | 是否开启benchmark,对预测速度、显存占用等进行统计 |
+| save_log_path | str | "./log_output/" | 开启`benchmark`时,日志结果的保存文件夹 |
+| show_log | bool | True | 是否显示预测中的日志信息 |
+| use_onnx | bool | False | 是否开启onnx预测 |
+
+
+* 预测引擎相关
+
+| 参数名称 | 类型 | 默认值 | 含义 |
+| :--: | :--: | :--: | :--: |
+| use_gpu | bool | True | 是否使用GPU进行预测 |
+| ir_optim | bool | True | 是否对计算图进行分析与优化,开启后可以加速预测过程 |
+| use_tensorrt | bool | False | 是否开启tensorrt |
+| min_subgraph_size | int | 15 | tensorrt中最小子图size,当子图的size大于该值时,才会尝试对该子图使用trt engine计算 |
+| precision | str | fp32 | 预测的精度,支持`fp32`, `fp16`, `int8` 3种输入 |
+| enable_mkldnn | bool | True | 是否开启mkldnn |
+| cpu_threads | int | 10 | 开启mkldnn时,cpu预测的线程数 |
+
+* 文本检测模型相关
+
+| 参数名称 | 类型 | 默认值 | 含义 |
+| :--: | :--: | :--: | :--: |
+| det_algorithm | str | "DB" | 文本检测算法名称,目前支持`DB`, `EAST`, `SAST`, `PSE` |
+| det_model_dir | str | xx | 检测inference模型路径 |
+| det_limit_side_len | int | 960 | 检测的图像边长限制 |
+| det_limit_type | str | "max" | 检测的变成限制类型,目前支持`min`, `max`,`min`表示保证图像最短边不小于`det_limit_side_len`,`max`表示保证图像最长边不大于`det_limit_side_len` |
+
+其中,DB算法相关参数如下
+
+| 参数名称 | 类型 | 默认值 | 含义 |
+| :--: | :--: | :--: | :--: |
+| det_db_thresh | float | 0.3 | DB输出的概率图中,得分大于该阈值的像素点才会被认为是文字像素点 |
+| det_db_box_thresh | float | 0.6 | 检测结果边框内,所有像素点的平均得分大于该阈值时,该结果会被认为是文字区域 |
+| det_db_unclip_ratio | float | 1.5 | `Vatti clipping`算法的扩张系数,使用该方法对文字区域进行扩张 |
+| max_batch_size | int | 10 | 预测的batch size |
+| use_dilation | bool | False | 是否对分割结果进行膨胀以获取更优检测效果 |
+| det_db_score_mode | str | "fast" | DB的检测结果得分计算方法,支持`fast`和`slow`,`fast`是根据polygon的外接矩形边框内的所有像素计算平均得分,`slow`是根据原始polygon内的所有像素计算平均得分,计算速度相对较慢一些,但是更加准确一些。 |
+
+EAST算法相关参数如下
+
+| 参数名称 | 类型 | 默认值 | 含义 |
+| :--: | :--: | :--: | :--: |
+| det_east_score_thresh | float | 0.8 | EAST后处理中score map的阈值 |
+| det_east_cover_thresh | float | 0.1 | EAST后处理中文本框的平均得分阈值 |
+| det_east_nms_thresh | float | 0.2 | EAST后处理中nms的阈值 |
+
+SAST算法相关参数如下
+
+| 参数名称 | 类型 | 默认值 | 含义 |
+| :--: | :--: | :--: | :--: |
+| det_sast_score_thresh | float | 0.5 | SAST后处理中的得分阈值 |
+| det_sast_nms_thresh | float | 0.5 | SAST后处理中nms的阈值 |
+| det_sast_polygon | bool | False | 是否多边形检测,弯曲文本场景(如Total-Text)设置为True |
+
+PSE算法相关参数如下
+
+| 参数名称 | 类型 | 默认值 | 含义 |
+| :--: | :--: | :--: | :--: |
+| det_pse_thresh | float | 0.0 | 对输出图做二值化的阈值 |
+| det_pse_box_thresh | float | 0.85 | 对box进行过滤的阈值,低于此阈值的丢弃 |
+| det_pse_min_area | float | 16 | box的最小面积,低于此阈值的丢弃 |
+| det_pse_box_type | str | "box" | 返回框的类型,box:四点坐标,poly: 弯曲文本的所有点坐标 |
+| det_pse_scale | int | 1 | 输入图像相对于进后处理的图的比例,如`640*640`的图像,网络输出为`160*160`,scale为2的情况下,进后处理的图片shape为`320*320`。这个值调大可以加快后处理速度,但是会带来精度的下降 |
+
+* 文本识别模型相关
+
+| 参数名称 | 类型 | 默认值 | 含义 |
+| :--: | :--: | :--: | :--: |
+| rec_algorithm | str | "CRNN" | 文本识别算法名称,目前支持`CRNN`, `SRN`, `RARE`, `NETR`, `SAR` |
+| rec_model_dir | str | 无,如果使用识别模型,该项是必填项 | 识别inference模型路径 |
+| rec_image_shape | list | [3, 32, 320] | 识别时的图像尺寸, |
+| rec_batch_num | int | 6 | 识别的batch size |
+| max_text_length | int | 25 | 识别结果最大长度,在`SRN`中有效 |
+| rec_char_dict_path | str | "./ppocr/utils/ppocr_keys_v1.txt" | 识别的字符字典文件 |
+| use_space_char | bool | True | 是否包含空格,如果为`True`,则会在最后字符字典中补充`空格`字符 |
+
+
+* 端到端文本检测与识别模型相关
+
+| 参数名称 | 类型 | 默认值 | 含义 |
+| :--: | :--: | :--: | :--: |
+| e2e_algorithm | str | "PGNet" | 端到端算法名称,目前支持`PGNet` |
+| e2e_model_dir | str | 无,如果使用端到端模型,该项是必填项 | 端到端模型inference模型路径 |
+| e2e_limit_side_len | int | 768 | 端到端的输入图像边长限制 |
+| e2e_limit_type | str | "max" | 端到端的边长限制类型,目前支持`min`, `max`,`min`表示保证图像最短边不小于`e2e_limit_side_len`,`max`表示保证图像最长边不大于`e2e_limit_side_len` |
+| e2e_pgnet_score_thresh | float | xx | xx |
+| e2e_char_dict_path | str | "./ppocr/utils/ic15_dict.txt" | 识别的字典文件路径 |
+| e2e_pgnet_valid_set | str | "totaltext" | 验证集名称,目前支持`totaltext`, `partvgg`,不同数据集对应的后处理方式不同,与训练过程保持一致即可 |
+| e2e_pgnet_mode | str | "fast" | PGNet的检测结果得分计算方法,支持`fast`和`slow`,`fast`是根据polygon的外接矩形边框内的所有像素计算平均得分,`slow`是根据原始polygon内的所有像素计算平均得分,计算速度相对较慢一些,但是更加准确一些。 |
+
+
+* 方向分类器模型相关
+
+| 参数名称 | 类型 | 默认值 | 含义 |
+| :--: | :--: | :--: | :--: |
+| use_angle_cls | bool | False | 是否使用方向分类器 |
+| cls_model_dir | str | 无,如果需要使用,则必须显式指定路径 | 方向分类器inference模型路径 |
+| cls_image_shape | list | [3, 48, 192] | 预测尺度 |
+| label_list | list | ['0', '180'] | class id对应的角度值 |
+| cls_batch_num | int | 6 | 方向分类器预测的batch size |
+| cls_thresh | float | 0.9 | 预测阈值,模型预测结果为180度,且得分大于该阈值时,认为最终预测结果为180度,需要翻转 |
diff --git a/doc/joinus.PNG b/doc/joinus.PNG
index cd9de9c14beaf0be346a1f7f1d09450a0905a880..99964b62d0e8a5867d5eb7a29640f0414c7af3b2 100644
Binary files a/doc/joinus.PNG and b/doc/joinus.PNG differ
diff --git a/ppocr/postprocess/east_postprocess.py b/ppocr/postprocess/east_postprocess.py
index ec6bf663854d3391bf8c584aa749dc6d1805d344..c194c81c6911aac0f9210109c37b76b44532e9c4 100755
--- a/ppocr/postprocess/east_postprocess.py
+++ b/ppocr/postprocess/east_postprocess.py
@@ -20,7 +20,6 @@ import numpy as np
from .locality_aware_nms import nms_locality
import cv2
import paddle
-import lanms
import os
import sys
@@ -61,6 +60,7 @@ class EASTPostProcess(object):
"""
restore text boxes from score map and geo map
"""
+
score_map = score_map[0]
geo_map = np.swapaxes(geo_map, 1, 0)
geo_map = np.swapaxes(geo_map, 1, 2)
@@ -76,8 +76,15 @@ class EASTPostProcess(object):
boxes = np.zeros((text_box_restored.shape[0], 9), dtype=np.float32)
boxes[:, :8] = text_box_restored.reshape((-1, 8))
boxes[:, 8] = score_map[xy_text[:, 0], xy_text[:, 1]]
- boxes = lanms.merge_quadrangle_n9(boxes, nms_thresh)
- # boxes = nms_locality(boxes.astype(np.float64), nms_thresh)
+
+ try:
+ import lanms
+ boxes = lanms.merge_quadrangle_n9(boxes, nms_thresh)
+ except:
+ print(
+ 'you should install lanms by pip3 install lanms-nova to speed up nms_locality'
+ )
+ boxes = nms_locality(boxes.astype(np.float64), nms_thresh)
if boxes.shape[0] == 0:
return []
# Here we filter some low score boxes by the average score map,
diff --git a/ppocr/utils/save_load.py b/ppocr/utils/save_load.py
index 4b890f6fa352772e6ebe1614b798e1ce69cdd17c..f6013a406634ed110ea5af613a5f31e56ce90ead 100644
--- a/ppocr/utils/save_load.py
+++ b/ppocr/utils/save_load.py
@@ -67,6 +67,7 @@ def load_model(config, model, optimizer=None):
if key not in params:
logger.warning("{} not in loaded params {} !".format(
key, params.keys()))
+ continue
pre_value = params[key]
if list(value.shape) == list(pre_value.shape):
new_state_dict[key] = pre_value
@@ -76,9 +77,14 @@ def load_model(config, model, optimizer=None):
format(key, value.shape, pre_value.shape))
model.set_state_dict(new_state_dict)
- optim_dict = paddle.load(checkpoints + '.pdopt')
if optimizer is not None:
- optimizer.set_state_dict(optim_dict)
+ if os.path.exists(checkpoints + '.pdopt'):
+ optim_dict = paddle.load(checkpoints + '.pdopt')
+ optimizer.set_state_dict(optim_dict)
+ else:
+ logger.warning(
+ "{}.pdopt is not exists, params of optimizer is not loaded".
+ format(checkpoints))
if os.path.exists(checkpoints + '.states'):
with open(checkpoints + '.states', 'rb') as f:
diff --git a/requirements.txt b/requirements.txt
index 903b8eda055573621f5d5479e85b17986b702ead..0c87c5c95069a2699f5a3a50320c883c6118ffe7 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -12,5 +12,4 @@ cython
lxml
premailer
openpyxl
-fasttext==0.9.1
-lanms-nova
\ No newline at end of file
+fasttext==0.9.1
\ No newline at end of file
diff --git a/test_tipc/configs/ch_PP-OCRv2/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt b/test_tipc/configs/ch_PP-OCRv2/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
index 2cd2ba5f1e8198cacadab653d3979d5a1662f9ea..cf4d3fde0221b2a0edaf3d0f9bde5d8ff02991da 100644
--- a/test_tipc/configs/ch_PP-OCRv2/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
+++ b/test_tipc/configs/ch_PP-OCRv2/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
@@ -5,12 +5,12 @@ infer_model:./inference/ch_PP-OCRv2_det_infer/
infer_export:null
infer_quant:True
inference:tools/infer/predict_system.py
---use_gpu:False
---enable_mkldnn:False
+--use_gpu:False|True
+--enable_mkldnn:False|True
--cpu_threads:1|6
--rec_batch_num:1
---use_tensorrt:False
---precision:int8
+--use_tensorrt:False|True
+--precision:fp32|fp16
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
--rec_model_dir:./inference/ch_PP-OCRv2_rec_infer/
diff --git a/test_tipc/configs/ch_PP-OCRv2_det_KL/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt b/test_tipc/configs/ch_PP-OCRv2_det_KL/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
index 0ff24cbccfe282c12982714b5d079b0031703a04..1aad65b687992155133ed11533a14f642510361d 100644
--- a/test_tipc/configs/ch_PP-OCRv2_det_KL/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
+++ b/test_tipc/configs/ch_PP-OCRv2_det_KL/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
@@ -1,15 +1,17 @@
===========================kl_quant_params===========================
model_name:PPOCRv2_ocr_det_kl
python:python3.7
+Global.pretrained_model:null
+Global.save_inference_dir:null
infer_model:./inference/ch_PP-OCRv2_det_infer/
infer_export:deploy/slim/quantization/quant_kl.py -c configs/det/ch_PP-OCRv2/ch_PP-OCRv2_det_cml.yml -o
infer_quant:True
inference:tools/infer/predict_det.py
---use_gpu:False
---enable_mkldnn:False
+--use_gpu:False|True
+--enable_mkldnn:True
--cpu_threads:1|6
--rec_batch_num:1
---use_tensorrt:False
+--use_tensorrt:False|True
--precision:int8
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
diff --git a/test_tipc/configs/ch_PP-OCRv2_rec_KL/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt b/test_tipc/configs/ch_PP-OCRv2_rec_KL/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
index 8826bb4f078d518a79748f9cb305268c5ec2c198..083a3ae26e726e290ffde4095821cbf3c40f7178 100644
--- a/test_tipc/configs/ch_PP-OCRv2_rec_KL/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
+++ b/test_tipc/configs/ch_PP-OCRv2_rec_KL/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
@@ -1,15 +1,17 @@
===========================kl_quant_params===========================
model_name:PPOCRv2_ocr_rec_kl
python:python3.7
+Global.pretrained_model:null
+Global.save_inference_dir:null
infer_model:./inference/ch_PP-OCRv2_rec_infer/
infer_export:deploy/slim/quantization/quant_kl.py -c test_tipc/configs/ch_PP-OCRv2_rec/ch_PP-OCRv2_rec_distillation.yml -o
infer_quant:True
inference:tools/infer/predict_rec.py
---use_gpu:False
---enable_mkldnn:False
+--use_gpu:False|True
+--enable_mkldnn:False|True
--cpu_threads:1|6
--rec_batch_num:1|6
---use_tensorrt:False
+--use_tensorrt:True
--precision:int8
--rec_model_dir:
--image_dir:./inference/rec_inference
diff --git a/test_tipc/configs/ch_ppocr_mobile_V2.0_det_FPGM/train_infer_python.txt b/test_tipc/configs/ch_ppocr_mobile_V2.0_det_FPGM/train_infer_python.txt
index 77889729e61a4b859895ee0de52c92ed258ace31..92ac3e9d37460a7f299f5cc2929a9bcaabdc34ef 100644
--- a/test_tipc/configs/ch_ppocr_mobile_V2.0_det_FPGM/train_infer_python.txt
+++ b/test_tipc/configs/ch_ppocr_mobile_V2.0_det_FPGM/train_infer_python.txt
@@ -4,7 +4,7 @@ python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
-Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=300
+Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
Global.pretrained_model:null
@@ -15,7 +15,7 @@ null:null
trainer:fpgm_train
norm_train:null
pact_train:null
-fpgm_train:deploy/slim/prune/sensitivity_anal.py -c test_tipc/configs/ppocr_det_mobile/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/det_mv3_db_v2.0_train/best_accuracy
+fpgm_train:deploy/slim/prune/sensitivity_anal.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model=./pretrain_models/det_mv3_db_v2.0_train/best_accuracy
distill_train:null
null:null
null:null
@@ -29,7 +29,7 @@ Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:null
quant_export:null
-fpgm_export:deploy/slim/prune/export_prune_model.py -c test_tipc/configs/ppocr_det_mobile/det_mv3_db.yml -o
+fpgm_export:deploy/slim/prune/export_prune_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
distill_export:null
export1:null
export2:null
diff --git a/test_tipc/configs/ch_ppocr_mobile_v2.0/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt b/test_tipc/configs/ch_ppocr_mobile_v2.0/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
index eea9d789dd4919fe8112d337e48b82fabacfc57a..6a023951713f2993cbec448d88cd4029919d5860 100644
--- a/test_tipc/configs/ch_ppocr_mobile_v2.0/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
+++ b/test_tipc/configs/ch_ppocr_mobile_v2.0/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
@@ -5,12 +5,12 @@ infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
infer_export:null
infer_quant:True
inference:tools/infer/predict_system.py
---use_gpu:False
---enable_mkldnn:False
+--use_gpu:False|True
+--enable_mkldnn:False|True
--cpu_threads:1|6
--rec_batch_num:1
---use_tensorrt:False
---precision:int8
+--use_tensorrt:False|True
+--precision:fp32|fp16
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
--rec_model_dir:./inference/ch_ppocr_mobile_v2.0_rec_infer/
diff --git a/test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_infer_python.txt b/test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_infer_python.txt
index d9766d150de8b80522004f772941640438d3fdb5..977312f2a49e76d92e4edc11f8f0d3ecf866999a 100644
--- a/test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_infer_python.txt
+++ b/test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_infer_python.txt
@@ -4,7 +4,7 @@ python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
-Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=300
+Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
Global.pretrained_model:null
@@ -13,7 +13,7 @@ train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
null:null
##
trainer:norm_train
-norm_train:tools/train.py -c test_tipc/configs/ppocr_det_mobile/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
+norm_train:tools/train.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
pact_train:null
fpgm_train:null
distill_train:null
@@ -27,7 +27,7 @@ null:null
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
-norm_export:tools/export_model.py -c test_tipc/configs/ppocr_det_mobile/det_mv3_db.yml -o
+norm_export:tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
quant_export:null
fpgm_export:null
distill_export:null
diff --git a/test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_mac_cpu_normal_normal_infer_python_mac_cpu.txt b/test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_mac_cpu_normal_normal_infer_python_mac_cpu.txt
index 4001ca18284b703b92a6998d2218df3f003c74d3..014dad5fc9d87c08a0725f57127f8bf2cb248be3 100644
--- a/test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_mac_cpu_normal_normal_infer_python_mac_cpu.txt
+++ b/test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_mac_cpu_normal_normal_infer_python_mac_cpu.txt
@@ -4,7 +4,7 @@ python:python
gpu_list:-1
Global.use_gpu:False
Global.auto_cast:null
-Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=300
+Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
Global.pretrained_model:null
@@ -12,10 +12,10 @@ train_model_name:latest
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
null:null
##
-trainer:norm_train|pact_train|fpgm_train
-norm_train:tools/train.py -c test_tipc/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
-pact_train:deploy/slim/quantization/quant.py -c test_tipc/configs/det_mv3_db.yml -o
-fpgm_train:deploy/slim/prune/sensitivity_anal.py -c test_tipc/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/det_mv3_db_v2.0_train/best_accuracy
+trainer:norm_train
+norm_train:tools/train.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
+pact_train:null
+fpgm_train:null
distill_train:null
null:null
null:null
@@ -27,9 +27,9 @@ null:null
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
-norm_export:tools/export_model.py -c test_tipc/configs/det_mv3_db.yml -o
-quant_export:deploy/slim/quantization/export_model.py -c test_tipc/configs/det_mv3_db.yml -o
-fpgm_export:deploy/slim/prune/export_prune_model.py -c test_tipc/configs/det_mv3_db.yml -o
+norm_export:tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
+quant_export:null
+fpgm_export:null
distill_export:null
export1:null
export2:null
diff --git a/test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_windows_gpu_normal_normal_infer_python_windows_cpu_gpu.txt b/test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_windows_gpu_normal_normal_infer_python_windows_cpu_gpu.txt
index 0f4faee4b32925b4d0780ece6838c176238c7000..6a63b39d976c0e9693deec097c37eb0ff212d8af 100644
--- a/test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_windows_gpu_normal_normal_infer_python_windows_cpu_gpu.txt
+++ b/test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_windows_gpu_normal_normal_infer_python_windows_cpu_gpu.txt
@@ -4,7 +4,7 @@ python:python
gpu_list:0
Global.use_gpu:True
Global.auto_cast:fp32|amp
-Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=300
+Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
Global.pretrained_model:null
@@ -12,10 +12,10 @@ train_model_name:latest
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
null:null
##
-trainer:norm_train|pact_train|fpgm_train
-norm_train:tools/train.py -c test_tipc/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
-pact_train:deploy/slim/quantization/quant.py -c test_tipc/configs/det_mv3_db.yml -o
-fpgm_train:deploy/slim/prune/sensitivity_anal.py -c test_tipc/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/det_mv3_db_v2.0_train/best_accuracy
+trainer:norm_train
+norm_train:tools/train.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
+pact_train:null
+fpgm_train:null
distill_train:null
null:null
null:null
@@ -27,9 +27,9 @@ null:null
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
-norm_export:tools/export_model.py -c test_tipc/configs/det_mv3_db.yml -o
-quant_export:deploy/slim/quantization/export_model.py -c test_tipc/configs/det_mv3_db.yml -o
-fpgm_export:deploy/slim/prune/export_prune_model.py -c test_tipc/configs/det_mv3_db.yml -o
+norm_export:tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
+quant_export:null
+fpgm_export:null
distill_export:null
export1:null
export2:null
@@ -49,63 +49,4 @@ inference:tools/infer/predict_det.py
null:null
--benchmark:True
null:null
-===========================cpp_infer_params===========================
-use_opencv:True
-infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
-infer_quant:False
-inference:./deploy/cpp_infer/build/ppocr det
---use_gpu:True|False
---enable_mkldnn:True|False
---cpu_threads:1|6
---rec_batch_num:1
---use_tensorrt:False|True
---precision:fp32|fp16
---det_model_dir:
---image_dir:./inference/ch_det_data_50/all-sum-510/
-null:null
---benchmark:True
-===========================serving_params===========================
-model_name:ocr_det
-python:python3.7
-trans_model:-m paddle_serving_client.convert
---dirname:./inference/ch_ppocr_mobile_v2.0_det_infer/
---model_filename:inference.pdmodel
---params_filename:inference.pdiparams
---serving_server:./deploy/pdserving/ppocr_det_mobile_2.0_serving/
---serving_client:./deploy/pdserving/ppocr_det_mobile_2.0_client/
-serving_dir:./deploy/pdserving
-web_service:web_service_det.py --config=config.yml --opt op.det.concurrency=1
-op.det.local_service_conf.devices:null|0
-op.det.local_service_conf.use_mkldnn:True|False
-op.det.local_service_conf.thread_num:1|6
-op.det.local_service_conf.use_trt:False|True
-op.det.local_service_conf.precision:fp32|fp16|int8
-pipline:pipeline_http_client.py|pipeline_rpc_client.py
---image_dir=../../doc/imgs
-===========================kl_quant_params===========================
-infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
-infer_export:tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
-infer_quant:True
-inference:tools/infer/predict_det.py
---use_gpu:True|False
---enable_mkldnn:True|False
---cpu_threads:1|6
---rec_batch_num:1
---use_tensorrt:False|True
---precision:int8
---det_model_dir:
---image_dir:./inference/ch_det_data_50/all-sum-510/
-null:null
---benchmark:True
-null:null
-null:null
-===========================lite_params===========================
-inference:./ocr_db_crnn det
-infer_model:./models/ch_ppocr_mobile_v2.0_det_opt.nb|./models/ch_ppocr_mobile_v2.0_det_slim_opt.nb
---cpu_threads:1|4
---batch_size:1
---power_mode:LITE_POWER_HIGH|LITE_POWER_LOW
---image_dir:./test_data/icdar2015_lite/text_localization/ch4_test_images/|./test_data/icdar2015_lite/text_localization/ch4_test_images/img_233.jpg
---config_dir:./config.txt
---rec_dict_dir:./ppocr_keys_v1.txt
---benchmark:True
+
diff --git a/test_tipc/configs/ch_ppocr_mobile_v2.0_det_KL/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt b/test_tipc/configs/ch_ppocr_mobile_v2.0_det_KL/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
index bd58e964033243c00e7a270d642f97ced7659114..1039dcad06d63bb1fc1a47b7cc4760cd8d75ed63 100644
--- a/test_tipc/configs/ch_ppocr_mobile_v2.0_det_KL/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
+++ b/test_tipc/configs/ch_ppocr_mobile_v2.0_det_KL/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
@@ -1,15 +1,17 @@
===========================kl_quant_params===========================
-model_name:PPOCRv2_ocr_det
+model_name:ch_ppocr_mobile_v2.0_det_KL
python:python3.7
+Global.pretrained_model:null
+Global.save_inference_dir:null
infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
infer_export:deploy/slim/quantization/quant_kl.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
infer_quant:True
inference:tools/infer/predict_det.py
---use_gpu:False
---enable_mkldnn:False
+--use_gpu:False|True
+--enable_mkldnn:True
--cpu_threads:1|6
--rec_batch_num:1
---use_tensorrt:False
+--use_tensorrt:False|True
--precision:int8
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
diff --git a/test_tipc/configs/ch_ppocr_mobile_v2.0_det_PACT/train_infer_python.txt b/test_tipc/configs/ch_ppocr_mobile_v2.0_det_PACT/train_infer_python.txt
index 7328be25ffd0ffa0abac83ec80e46be42ff93185..8a6c6568584250d269acfe63aef43ef66410fd99 100644
--- a/test_tipc/configs/ch_ppocr_mobile_v2.0_det_PACT/train_infer_python.txt
+++ b/test_tipc/configs/ch_ppocr_mobile_v2.0_det_PACT/train_infer_python.txt
@@ -4,7 +4,7 @@ python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
-Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=300
+Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
Global.pretrained_model:null
@@ -14,7 +14,7 @@ null:null
##
trainer:pact_train
norm_train:null
-pact_train:deploy/slim/quantization/quant.py -c test_tipc/configs/ppocr_det_mobile/det_mv3_db.yml -o
+pact_train:deploy/slim/quantization/quant.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
fpgm_train:null
distill_train:null
null:null
@@ -28,7 +28,7 @@ null:null
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:null
-quant_export:deploy/slim/quantization/export_model.py -c test_tipc/configs/ppocr_det_mobile/det_mv3_db.yml -o
+quant_export:deploy/slim/quantization/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
fpgm_export:null
distill_export:null
export1:null
diff --git a/test_tipc/configs/ch_ppocr_mobile_v2.0_rec_KL/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt b/test_tipc/configs/ch_ppocr_mobile_v2.0_rec_KL/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
new file mode 100644
index 0000000000000000000000000000000000000000..92f33c58c9e97347e53b778bde5a21472b769f36
--- /dev/null
+++ b/test_tipc/configs/ch_ppocr_mobile_v2.0_rec_KL/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
@@ -0,0 +1,21 @@
+===========================kl_quant_params===========================
+model_name:ch_ppocr_mobile_v2.0_rec_KL
+python:python3.7
+Global.pretrained_model:null
+Global.save_inference_dir:null
+infer_model:./inference/ch_ppocr_mobile_v2.0_rec_infer/
+infer_export:deploy/slim/quantization/quant_kl.py -c test_tipc/configs/ch_ppocr_mobile_v2.0_rec_KL/rec_chinese_lite_train_v2.0.yml -o
+infer_quant:True
+inference:tools/infer/predict_rec.py
+--use_gpu:False|True
+--enable_mkldnn:True
+--cpu_threads:1|6
+--rec_batch_num:1
+--use_tensorrt:False|True
+--precision:int8
+--det_model_dir:
+--image_dir:./inference/rec_inference
+null:null
+--benchmark:True
+null:null
+null:null
diff --git a/test_tipc/configs/ch_ppocr_mobile_v2.0_rec_KL/rec_chinese_lite_train_v2.0.yml b/test_tipc/configs/ch_ppocr_mobile_v2.0_rec_KL/rec_chinese_lite_train_v2.0.yml
new file mode 100644
index 0000000000000000000000000000000000000000..b06dafe7fdc01eadeee51e70dfa4e8c675bda531
--- /dev/null
+++ b/test_tipc/configs/ch_ppocr_mobile_v2.0_rec_KL/rec_chinese_lite_train_v2.0.yml
@@ -0,0 +1,101 @@
+Global:
+ use_gpu: true
+ epoch_num: 500
+ log_smooth_window: 20
+ print_batch_step: 10
+ save_model_dir: ./output/rec_chinese_lite_v2.0
+ save_epoch_step: 3
+ # evaluation is run every 5000 iterations after the 4000th iteration
+ eval_batch_step: [0, 2000]
+ cal_metric_during_train: True
+ pretrained_model:
+ checkpoints:
+ save_inference_dir:
+ use_visualdl: False
+ infer_img: doc/imgs_words/ch/word_1.jpg
+ # for data or label process
+ character_dict_path: ppocr/utils/ppocr_keys_v1.txt
+ max_text_length: 25
+ infer_mode: False
+ use_space_char: True
+ save_res_path: ./output/rec/predicts_chinese_lite_v2.0.txt
+
+
+Optimizer:
+ name: Adam
+ beta1: 0.9
+ beta2: 0.999
+ lr:
+ name: Cosine
+ learning_rate: 0.001
+ regularizer:
+ name: 'L2'
+ factor: 0.00001
+
+Architecture:
+ model_type: rec
+ algorithm: CRNN
+ Transform:
+ Backbone:
+ name: MobileNetV3
+ scale: 0.5
+ model_name: small
+ small_stride: [1, 2, 2, 2]
+ Neck:
+ name: SequenceEncoder
+ encoder_type: rnn
+ hidden_size: 48
+ Head:
+ name: CTCHead
+ fc_decay: 0.00001
+
+Loss:
+ name: CTCLoss
+
+PostProcess:
+ name: CTCLabelDecode
+
+Metric:
+ name: RecMetric
+ main_indicator: acc
+
+Train:
+ dataset:
+ name: SimpleDataSet
+ data_dir: train_data/ic15_data
+ label_file_list: ["train_data/ic15_data/rec_gt_train.txt"]
+ transforms:
+ - DecodeImage: # load image
+ img_mode: BGR
+ channel_first: False
+ - RecAug:
+ - CTCLabelEncode: # Class handling label
+ - RecResizeImg:
+ image_shape: [3, 32, 320]
+ - KeepKeys:
+ keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
+ loader:
+ shuffle: True
+ batch_size_per_card: 256
+ drop_last: True
+ num_workers: 8
+
+Eval:
+ dataset:
+ name: SimpleDataSet
+ data_dir: train_data/ic15_data
+ label_file_list: ["train_data/ic15_data/rec_gt_test.txt"]
+ transforms:
+ - DecodeImage: # load image
+ img_mode: BGR
+ channel_first: False
+ - CTCLabelEncode: # Class handling label
+ - RecResizeImg:
+ image_shape: [3, 32, 320]
+ - KeepKeys:
+ keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
+ loader:
+ shuffle: False
+ drop_last: False
+ batch_size_per_card: 256
+ num_workers: 8
diff --git a/test_tipc/configs/ch_ppocr_mobile_v2.0_rec_PACT/rec_chinese_lite_train_v2.0.yml b/test_tipc/configs/ch_ppocr_mobile_v2.0_rec_PACT/rec_chinese_lite_train_v2.0.yml
new file mode 100644
index 0000000000000000000000000000000000000000..b06dafe7fdc01eadeee51e70dfa4e8c675bda531
--- /dev/null
+++ b/test_tipc/configs/ch_ppocr_mobile_v2.0_rec_PACT/rec_chinese_lite_train_v2.0.yml
@@ -0,0 +1,101 @@
+Global:
+ use_gpu: true
+ epoch_num: 500
+ log_smooth_window: 20
+ print_batch_step: 10
+ save_model_dir: ./output/rec_chinese_lite_v2.0
+ save_epoch_step: 3
+ # evaluation is run every 5000 iterations after the 4000th iteration
+ eval_batch_step: [0, 2000]
+ cal_metric_during_train: True
+ pretrained_model:
+ checkpoints:
+ save_inference_dir:
+ use_visualdl: False
+ infer_img: doc/imgs_words/ch/word_1.jpg
+ # for data or label process
+ character_dict_path: ppocr/utils/ppocr_keys_v1.txt
+ max_text_length: 25
+ infer_mode: False
+ use_space_char: True
+ save_res_path: ./output/rec/predicts_chinese_lite_v2.0.txt
+
+
+Optimizer:
+ name: Adam
+ beta1: 0.9
+ beta2: 0.999
+ lr:
+ name: Cosine
+ learning_rate: 0.001
+ regularizer:
+ name: 'L2'
+ factor: 0.00001
+
+Architecture:
+ model_type: rec
+ algorithm: CRNN
+ Transform:
+ Backbone:
+ name: MobileNetV3
+ scale: 0.5
+ model_name: small
+ small_stride: [1, 2, 2, 2]
+ Neck:
+ name: SequenceEncoder
+ encoder_type: rnn
+ hidden_size: 48
+ Head:
+ name: CTCHead
+ fc_decay: 0.00001
+
+Loss:
+ name: CTCLoss
+
+PostProcess:
+ name: CTCLabelDecode
+
+Metric:
+ name: RecMetric
+ main_indicator: acc
+
+Train:
+ dataset:
+ name: SimpleDataSet
+ data_dir: train_data/ic15_data
+ label_file_list: ["train_data/ic15_data/rec_gt_train.txt"]
+ transforms:
+ - DecodeImage: # load image
+ img_mode: BGR
+ channel_first: False
+ - RecAug:
+ - CTCLabelEncode: # Class handling label
+ - RecResizeImg:
+ image_shape: [3, 32, 320]
+ - KeepKeys:
+ keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
+ loader:
+ shuffle: True
+ batch_size_per_card: 256
+ drop_last: True
+ num_workers: 8
+
+Eval:
+ dataset:
+ name: SimpleDataSet
+ data_dir: train_data/ic15_data
+ label_file_list: ["train_data/ic15_data/rec_gt_test.txt"]
+ transforms:
+ - DecodeImage: # load image
+ img_mode: BGR
+ channel_first: False
+ - CTCLabelEncode: # Class handling label
+ - RecResizeImg:
+ image_shape: [3, 32, 320]
+ - KeepKeys:
+ keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
+ loader:
+ shuffle: False
+ drop_last: False
+ batch_size_per_card: 256
+ num_workers: 8
diff --git a/test_tipc/configs/ch_ppocr_mobile_v2.0_rec_PACT/train_infer_python.txt b/test_tipc/configs/ch_ppocr_mobile_v2.0_rec_PACT/train_infer_python.txt
new file mode 100644
index 0000000000000000000000000000000000000000..7bbdd58ae13eca00623123cf2ca39d3b76daa72a
--- /dev/null
+++ b/test_tipc/configs/ch_ppocr_mobile_v2.0_rec_PACT/train_infer_python.txt
@@ -0,0 +1,51 @@
+===========================train_params===========================
+model_name:ch_ppocr_mobile_v2.0_rec_PACT
+python:python3.7
+gpu_list:0
+Global.use_gpu:True|True
+Global.auto_cast:null
+Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=300
+Global.save_model_dir:./output/
+Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
+Global.checkpoints:null
+train_model_name:latest
+train_infer_img_dir:./train_data/ic15_data/test/word_1.png
+null:null
+##
+trainer:pact_train
+norm_train:null
+pact_train:deploy/slim/quantization/quant.py -c test_tipc/configs/ch_ppocr_mobile_v2.0_rec_PACT/rec_chinese_lite_train_v2.0.yml -o
+fpgm_train:null
+distill_train:null
+null:null
+null:null
+##
+===========================eval_params===========================
+eval:null
+null:null
+##
+===========================infer_params===========================
+Global.save_inference_dir:./output/
+Global.checkpoints:
+norm_export:null
+quant_export:deploy/slim/quantization/export_model.py -ctest_tipc/configs/ch_ppocr_mobile_v2.0_rec_PACT/rec_chinese_lite_train_v2.0.yml -o
+fpgm_export:null
+distill_export:null
+export1:null
+export2:null
+inference_dir:null
+train_model:null
+infer_export:null
+infer_quant:False
+inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ppocr_keys_v1.txt --rec_image_shape="3,32,100"
+--use_gpu:True|False
+--enable_mkldnn:True|False
+--cpu_threads:1|6
+--rec_batch_num:1|6
+--use_tensorrt:False|True
+--precision:fp32|fp16|int8
+--rec_model_dir:
+--image_dir:./inference/rec_inference
+--save_log_path:./test/output/
+--benchmark:True
+null:null
\ No newline at end of file
diff --git a/test_tipc/configs/ch_ppocr_server_v2.0/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt b/test_tipc/configs/ch_ppocr_server_v2.0/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
new file mode 100644
index 0000000000000000000000000000000000000000..5a93571a76366de191d2fb1736aa3ff4c71b1737
--- /dev/null
+++ b/test_tipc/configs/ch_ppocr_server_v2.0/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
@@ -0,0 +1,19 @@
+===========================ch_ppocr_mobile_v2.0===========================
+model_name:ch_ppocr_server_v2.0
+python:python3.7
+infer_model:./inference/ch_ppocr_server_v2.0_det_infer/
+infer_export:null
+infer_quant:True
+inference:tools/infer/predict_system.py
+--use_gpu:False
+--enable_mkldnn:False
+--cpu_threads:1|6
+--rec_batch_num:1
+--use_tensorrt:False
+--precision:int8
+--det_model_dir:
+--image_dir:./inference/ch_det_data_50/all-sum-510/
+--rec_model_dir:./inference/ch_ppocr_server_v2.0_rec_infer/
+--benchmark:True
+null:null
+null:null
diff --git a/test_tipc/configs/det_mv3_db_v2.0/train_infer_python.txt b/test_tipc/configs/det_mv3_db_v2.0/train_infer_python.txt
new file mode 100644
index 0000000000000000000000000000000000000000..de9df227722c8813fc8a21757b118875157a8a56
--- /dev/null
+++ b/test_tipc/configs/det_mv3_db_v2.0/train_infer_python.txt
@@ -0,0 +1,51 @@
+===========================train_params===========================
+model_name:det_mv3_db_v2.0
+python:python3.7
+gpu_list:0|0,1
+Global.use_gpu:True|True
+Global.auto_cast:null
+Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=300
+Global.save_model_dir:./output/
+Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
+Global.pretrained_model:null
+train_model_name:latest
+train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
+null:null
+##
+trainer:norm_train
+norm_train:tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
+pact_train:null
+fpgm_train:null
+distill_train:null
+null:null
+null:null
+##
+===========================eval_params===========================
+eval:null
+null:null
+##
+===========================infer_params===========================
+Global.save_inference_dir:./output/
+Global.pretrained_model:
+norm_export:tools/export_model.py -c configs/det/det_mv3_db.yml -o
+quant_export:null
+fpgm_export:null
+distill_export:null
+export1:null
+export2:null
+inference_dir:null
+train_model:./inference/det_mv3_db_v2.0_train/best_accuracy
+infer_export:tools/export_model.py -c configs/det/det_mv3_db.yml -o
+infer_quant:False
+inference:tools/infer/predict_det.py
+--use_gpu:True|False
+--enable_mkldnn:True|False
+--cpu_threads:1|6
+--rec_batch_num:1
+--use_tensorrt:False|True
+--precision:fp32|fp16|int8
+--det_model_dir:
+--image_dir:./inference/ch_det_data_50/all-sum-510/
+null:null
+--benchmark:True
+null:null
\ No newline at end of file
diff --git a/test_tipc/configs/det_mv3_pse_v2.0/det_mv3_pse.yml b/test_tipc/configs/det_mv3_pse_v2.0/det_mv3_pse.yml
new file mode 100644
index 0000000000000000000000000000000000000000..d37fdcfbb5b27404403674d99c1b8abe8cd65e85
--- /dev/null
+++ b/test_tipc/configs/det_mv3_pse_v2.0/det_mv3_pse.yml
@@ -0,0 +1,135 @@
+Global:
+ use_gpu: true
+ epoch_num: 600
+ log_smooth_window: 20
+ print_batch_step: 10
+ save_model_dir: ./output/det_mv3_pse/
+ save_epoch_step: 600
+ # evaluation is run every 63 iterations
+ eval_batch_step: [ 0,1000 ]
+ cal_metric_during_train: False
+ pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
+ checkpoints: #./output/det_r50_vd_pse_batch8_ColorJitter/best_accuracy
+ save_inference_dir:
+ use_visualdl: False
+ infer_img: doc/imgs_en/img_10.jpg
+ save_res_path: ./output/det_pse/predicts_pse.txt
+
+Architecture:
+ model_type: det
+ algorithm: PSE
+ Transform: null
+ Backbone:
+ name: MobileNetV3
+ scale: 0.5
+ model_name: large
+ Neck:
+ name: FPN
+ out_channels: 96
+ Head:
+ name: PSEHead
+ hidden_dim: 96
+ out_channels: 7
+
+Loss:
+ name: PSELoss
+ alpha: 0.7
+ ohem_ratio: 3
+ kernel_sample_mask: pred
+ reduction: none
+
+Optimizer:
+ name: Adam
+ beta1: 0.9
+ beta2: 0.999
+ lr:
+ name: Step
+ learning_rate: 0.001
+ step_size: 200
+ gamma: 0.1
+ regularizer:
+ name: 'L2'
+ factor: 0.0005
+
+PostProcess:
+ name: PSEPostProcess
+ thresh: 0
+ box_thresh: 0.85
+ min_area: 16
+ box_type: box # 'box' or 'poly'
+ scale: 1
+
+Metric:
+ name: DetMetric
+ main_indicator: hmean
+
+Train:
+ dataset:
+ name: SimpleDataSet
+ data_dir: ./train_data/icdar2015/text_localization/
+ label_file_list:
+ - ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
+ ratio_list: [ 1.0 ]
+ transforms:
+ - DecodeImage: # load image
+ img_mode: BGR
+ channel_first: False
+ - DetLabelEncode: # Class handling label
+ - ColorJitter:
+ brightness: 0.12549019607843137
+ saturation: 0.5
+ - IaaAugment:
+ augmenter_args:
+ - { 'type': Resize, 'args': { 'size': [ 0.5, 3 ] } }
+ - { 'type': Fliplr, 'args': { 'p': 0.5 } }
+ - { 'type': Affine, 'args': { 'rotate': [ -10, 10 ] } }
+ - MakePseGt:
+ kernel_num: 7
+ min_shrink_ratio: 0.4
+ size: 640
+ - RandomCropImgMask:
+ size: [ 640,640 ]
+ main_key: gt_text
+ crop_keys: [ 'image', 'gt_text', 'gt_kernels', 'mask' ]
+ - NormalizeImage:
+ scale: 1./255.
+ mean: [ 0.485, 0.456, 0.406 ]
+ std: [ 0.229, 0.224, 0.225 ]
+ order: 'hwc'
+ - ToCHWImage:
+ - KeepKeys:
+ keep_keys: [ 'image', 'gt_text', 'gt_kernels', 'mask' ] # the order of the dataloader list
+ loader:
+ shuffle: True
+ drop_last: False
+ batch_size_per_card: 16
+ num_workers: 8
+
+Eval:
+ dataset:
+ name: SimpleDataSet
+ data_dir: ./train_data/icdar2015/text_localization/
+ label_file_list:
+ - ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
+ ratio_list: [ 1.0 ]
+ transforms:
+ - DecodeImage: # load image
+ img_mode: BGR
+ channel_first: False
+ - DetLabelEncode: # Class handling label
+ - DetResizeForTest:
+ limit_side_len: 736
+ limit_type: min
+ - NormalizeImage:
+ scale: 1./255.
+ mean: [ 0.485, 0.456, 0.406 ]
+ std: [ 0.229, 0.224, 0.225 ]
+ order: 'hwc'
+ - ToCHWImage:
+ - KeepKeys:
+ keep_keys: [ 'image', 'shape', 'polys', 'ignore_tags' ]
+ loader:
+ shuffle: False
+ drop_last: False
+ batch_size_per_card: 1 # must be 1
+ num_workers: 8
\ No newline at end of file
diff --git a/test_tipc/configs/det_mv3_pse_v2.0/train_infer_python.txt b/test_tipc/configs/det_mv3_pse_v2.0/train_infer_python.txt
new file mode 100644
index 0000000000000000000000000000000000000000..f9909027f10d9e9f96d65f9f5a1c5f3fd5c9e1c6
--- /dev/null
+++ b/test_tipc/configs/det_mv3_pse_v2.0/train_infer_python.txt
@@ -0,0 +1,51 @@
+===========================train_params===========================
+model_name:det_mv3_pse_v2.0
+python:python3.7
+gpu_list:0
+Global.use_gpu:True|True
+Global.auto_cast:fp32
+Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=500
+Global.save_model_dir:./output/
+Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
+Global.pretrained_model:null
+train_model_name:latest
+train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
+null:null
+##
+trainer:norm_train
+norm_train:tools/train.py -c test_tipc/configs/det_mv3_pse_v2.0/det_mv3_pse.yml -o
+pact_train:null
+fpgm_train:null
+distill_train:null
+null:null
+null:null
+##
+===========================eval_params===========================
+eval:null
+null:null
+##
+===========================infer_params===========================
+Global.save_inference_dir:./output/
+Global.pretrained_model:
+norm_export:tools/export_model.py -c test_tipc/configs/det_mv3_pse_v2.0/det_mv3_pse.yml -o
+quant_export:null
+fpgm_export:null
+distill_export:null
+export1:null
+export2:null
+##
+train_model:./inference/det_mv3_pse/best_accuracy
+infer_export:tools/export_model.py -c test_tipc/cconfigs/det_mv3_pse_v2.0/det_mv3_pse.yml -o
+infer_quant:False
+inference:tools/infer/predict_det.py
+--use_gpu:True|False
+--enable_mkldnn:True|False
+--cpu_threads:1|6
+--rec_batch_num:1
+--use_tensorrt:False|True
+--precision:fp32|fp16|int8
+--det_model_dir:
+--image_dir:./inference/ch_det_data_50/all-sum-510/
+--save_log_path:null
+--benchmark:True
+--det_algorithm:PSE
diff --git a/test_tipc/configs/det_r50_db_v2.0/train_infer_python.txt b/test_tipc/configs/det_r50_db_v2.0/train_infer_python.txt
new file mode 100644
index 0000000000000000000000000000000000000000..72b5ede15d27a33477b5ecd8302aaccc0ab56413
--- /dev/null
+++ b/test_tipc/configs/det_r50_db_v2.0/train_infer_python.txt
@@ -0,0 +1,51 @@
+===========================train_params===========================
+model_name:det_r50_db_v2.0
+python:python3.7
+gpu_list:0|0,1
+Global.use_gpu:True|True
+Global.auto_cast:null
+Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300
+Global.save_model_dir:./output/
+Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_lite_infer=4
+Global.pretrained_model:null
+train_model_name:latest
+train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
+null:null
+##
+trainer:norm_train
+norm_train:tools/train.py -c configs/det/det_r50_vd_db.yml -o
+quant_export:null
+fpgm_export:null
+distill_train:null
+null:null
+null:null
+##
+===========================eval_params===========================
+eval:tools/eval.py -c configs/det/det_r50_vd_db.yml -o
+null:null
+##
+===========================infer_params===========================
+Global.save_inference_dir:./output/
+Global.pretrained_model:
+norm_export:tools/export_model.py -c configs/det/det_r50_vd_db.yml -o
+quant_export:null
+fpgm_export:null
+distill_export:null
+export1:null
+export2:null
+##
+train_model:./inference/ch_ppocr_server_v2.0_det_train/best_accuracy
+infer_export:tools/export_model.py -c configs/det/det_r50_vd_db.yml -o
+infer_quant:False
+inference:tools/infer/predict_det.py
+--use_gpu:True|False
+--enable_mkldnn:True|False
+--cpu_threads:1|6
+--rec_batch_num:1
+--use_tensorrt:False|True
+--precision:fp32|fp16|int8
+--det_model_dir:
+--image_dir:./inference/ch_det_data_50/all-sum-510/
+--save_log_path:null
+--benchmark:True
+null:null
\ No newline at end of file
diff --git a/test_tipc/configs/det_r50_vd_east_v2.0/train_infer_python.txt b/test_tipc/configs/det_r50_vd_east_v2.0/train_infer_python.txt
index e9eaa779520f78622509153482fd6a84322c9cc5..dfb376237ee35c277fcd86a88328c562d5c0429a 100644
--- a/test_tipc/configs/det_r50_vd_east_v2.0/train_infer_python.txt
+++ b/test_tipc/configs/det_r50_vd_east_v2.0/train_infer_python.txt
@@ -34,7 +34,7 @@ distill_export:null
export1:null
export2:null
##
-train_model:./inference/det_mv3_east/best_accuracy
+train_model:./inference/det_r50_vd_east/best_accuracy
infer_export:tools/export_model.py -c test_tipc/cconfigs/det_r50_vd_east_v2.0/det_r50_vd_east.yml -o
infer_quant:False
inference:tools/infer/predict_det.py
diff --git a/test_tipc/configs/det_r50_vd_pse_v2.0/det_r50_vd_pse.yml b/test_tipc/configs/det_r50_vd_pse_v2.0/det_r50_vd_pse.yml
new file mode 100644
index 0000000000000000000000000000000000000000..5ebc4252718d5572837eac58061bf6f9eb35bf73
--- /dev/null
+++ b/test_tipc/configs/det_r50_vd_pse_v2.0/det_r50_vd_pse.yml
@@ -0,0 +1,134 @@
+Global:
+ use_gpu: true
+ epoch_num: 600
+ log_smooth_window: 20
+ print_batch_step: 10
+ save_model_dir: ./output/det_r50_vd_pse/
+ save_epoch_step: 600
+ # evaluation is run every 125 iterations
+ eval_batch_step: [ 0,1000 ]
+ cal_metric_during_train: False
+ pretrained_model:
+ checkpoints: #./output/det_r50_vd_pse_batch8_ColorJitter/best_accuracy
+ save_inference_dir:
+ use_visualdl: False
+ infer_img: doc/imgs_en/img_10.jpg
+ save_res_path: ./output/det_pse/predicts_pse.txt
+
+Architecture:
+ model_type: det
+ algorithm: PSE
+ Transform:
+ Backbone:
+ name: ResNet
+ layers: 50
+ Neck:
+ name: FPN
+ out_channels: 256
+ Head:
+ name: PSEHead
+ hidden_dim: 256
+ out_channels: 7
+
+Loss:
+ name: PSELoss
+ alpha: 0.7
+ ohem_ratio: 3
+ kernel_sample_mask: pred
+ reduction: none
+
+Optimizer:
+ name: Adam
+ beta1: 0.9
+ beta2: 0.999
+ lr:
+ name: Step
+ learning_rate: 0.0001
+ step_size: 200
+ gamma: 0.1
+ regularizer:
+ name: 'L2'
+ factor: 0.0005
+
+PostProcess:
+ name: PSEPostProcess
+ thresh: 0
+ box_thresh: 0.85
+ min_area: 16
+ box_type: box # 'box' or 'poly'
+ scale: 1
+
+Metric:
+ name: DetMetric
+ main_indicator: hmean
+
+Train:
+ dataset:
+ name: SimpleDataSet
+ data_dir: ./train_data/icdar2015/text_localization/
+ label_file_list:
+ - ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
+ ratio_list: [ 1.0 ]
+ transforms:
+ - DecodeImage: # load image
+ img_mode: BGR
+ channel_first: False
+ - DetLabelEncode: # Class handling label
+ - ColorJitter:
+ brightness: 0.12549019607843137
+ saturation: 0.5
+ - IaaAugment:
+ augmenter_args:
+ - { 'type': Resize, 'args': { 'size': [ 0.5, 3 ] } }
+ - { 'type': Fliplr, 'args': { 'p': 0.5 } }
+ - { 'type': Affine, 'args': { 'rotate': [ -10, 10 ] } }
+ - MakePseGt:
+ kernel_num: 7
+ min_shrink_ratio: 0.4
+ size: 640
+ - RandomCropImgMask:
+ size: [ 640,640 ]
+ main_key: gt_text
+ crop_keys: [ 'image', 'gt_text', 'gt_kernels', 'mask' ]
+ - NormalizeImage:
+ scale: 1./255.
+ mean: [ 0.485, 0.456, 0.406 ]
+ std: [ 0.229, 0.224, 0.225 ]
+ order: 'hwc'
+ - ToCHWImage:
+ - KeepKeys:
+ keep_keys: [ 'image', 'gt_text', 'gt_kernels', 'mask' ] # the order of the dataloader list
+ loader:
+ shuffle: True
+ drop_last: False
+ batch_size_per_card: 8
+ num_workers: 8
+
+Eval:
+ dataset:
+ name: SimpleDataSet
+ data_dir: ./train_data/icdar2015/text_localization/
+ label_file_list:
+ - ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
+ ratio_list: [ 1.0 ]
+ transforms:
+ - DecodeImage: # load image
+ img_mode: BGR
+ channel_first: False
+ - DetLabelEncode: # Class handling label
+ - DetResizeForTest:
+ limit_side_len: 736
+ limit_type: min
+ - NormalizeImage:
+ scale: 1./255.
+ mean: [ 0.485, 0.456, 0.406 ]
+ std: [ 0.229, 0.224, 0.225 ]
+ order: 'hwc'
+ - ToCHWImage:
+ - KeepKeys:
+ keep_keys: [ 'image', 'shape', 'polys', 'ignore_tags' ]
+ loader:
+ shuffle: False
+ drop_last: False
+ batch_size_per_card: 1 # must be 1
+ num_workers: 8
\ No newline at end of file
diff --git a/test_tipc/configs/det_r50_vd_pse_v2.0/train_infer_python.txt b/test_tipc/configs/det_r50_vd_pse_v2.0/train_infer_python.txt
new file mode 100644
index 0000000000000000000000000000000000000000..5ab6d45d7c1eb5e3c17fd53a8c8c504812c1012c
--- /dev/null
+++ b/test_tipc/configs/det_r50_vd_pse_v2.0/train_infer_python.txt
@@ -0,0 +1,51 @@
+===========================train_params===========================
+model_name:det_r50_vd_pse_v2.0
+python:python3.7
+gpu_list:0
+Global.use_gpu:True|True
+Global.auto_cast:fp32
+Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=500
+Global.save_model_dir:./output/
+Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
+Global.pretrained_model:null
+train_model_name:latest
+train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
+null:null
+##
+trainer:norm_train
+norm_train:tools/train.py -c test_tipc/configs/det_r50_vd_pse_v2.0/det_r50_vd_pse.yml -o
+pact_train:null
+fpgm_train:null
+distill_train:null
+null:null
+null:null
+##
+===========================eval_params===========================
+eval:null
+null:null
+##
+===========================infer_params===========================
+Global.save_inference_dir:./output/
+Global.pretrained_model:
+norm_export:tools/export_model.py -c test_tipc/configs/det_r50_vd_pse_v2.0/det_r50_vd_pse.yml -o
+quant_export:null
+fpgm_export:null
+distill_export:null
+export1:null
+export2:null
+##
+train_model:./inference/det_r50_vd_pse/best_accuracy
+infer_export:tools/export_model.py -c test_tipc/cconfigs/det_r50_vd_pse_v2.0/det_r50_vd_pse.yml -o
+infer_quant:False
+inference:tools/infer/predict_det.py
+--use_gpu:True|False
+--enable_mkldnn:True|False
+--cpu_threads:1|6
+--rec_batch_num:1
+--use_tensorrt:False|True
+--precision:fp32|fp16|int8
+--det_model_dir:
+--image_dir:./inference/ch_det_data_50/all-sum-510/
+--save_log_path:null
+--benchmark:True
+--det_algorithm:PSE
diff --git a/test_tipc/prepare.sh b/test_tipc/prepare.sh
index a0006375fd5d4998f2342afa4fe5bdfb3e9828ee..dec5742368a7f3f7ce197d835e7428d7478a1125 100644
--- a/test_tipc/prepare.sh
+++ b/test_tipc/prepare.sh
@@ -52,10 +52,16 @@ if [ ${MODE} = "lite_train_lite_infer" ];then
wget -nc -P ./train_data/ wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/total_text_lite.tar --no-check-certificate
cd ./train_data && tar xf total_text_lite.tar && ln -s total_text && cd ../
fi
- if [ ${model_name} == "rec_resnet_stn_bilstm_att_v2.0" ]; then
- wget -nc https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.en.300.bin.gz
- gunzip cc.en.300.bin.gz
+ if [ ${model_name} == "det_mv3_db_v2.0" ]; then
+ wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar --no-check-certificate
+ cd ./inference/ && tar xf det_mv3_db_v2.0_train.tar && cd ../
fi
+ if [ ${model_name} == "det_r50_db_v2.0" ]; then
+ wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams --no-check-certificate
+ wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar --no-check-certificate
+ cd ./inference/ && tar xf det_r50_vd_db_v2.0_train.tar && cd ../
+ fi
+
elif [ ${MODE} = "whole_train_whole_infer" ];then
wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams --no-check-certificate
rm -rf ./train_data/icdar2015
@@ -104,12 +110,12 @@ elif [ ${MODE} = "whole_infer" ];then
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar --no-check-certificate
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
cd ./inference && tar xf ch_ppocr_server_v2.0_det_train.tar && tar xf ch_det_data_50.tar && cd ../
- elif [ ${model_name} = "ocr_system_mobile" ]; then
+ elif [ ${model_name} = "ch_ppocr_mobile_v2.0" ]; then
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar --no-check-certificate
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar --no-check-certificate
cd ./inference && tar xf ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_det_data_50.tar && cd ../
- elif [ ${model_name} = "ocr_system_server" ]; then
+ elif [ ${model_name} = "ch_ppocr_server_v2.0" ]; then
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar --no-check-certificate
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar --no-check-certificate
@@ -125,7 +131,7 @@ elif [ ${MODE} = "whole_infer" ];then
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar --no-check-certificate
cd ./inference && tar xf ${eval_model_name}.tar && tar xf rec_inference.tar && cd ../
fi
- elif [ ${model_name} = "ch_PPOCRv2_det" ]; then
+ if [ ${model_name} = "ch_PPOCRv2_det" ]; then
eval_model_name="ch_PP-OCRv2_det_infer"
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar --no-check-certificate
@@ -137,11 +143,22 @@ elif [ ${MODE} = "whole_infer" ];then
fi
if [ ${model_name} == "det_r50_vd_sast_icdar15_v2.0" ]; then
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar --no-check-certificate
- cd ./inference/ && tar det_r50_vd_sast_icdar15_v2.0_train.tar && cd ../
+ cd ./inference/ && tar xf det_r50_vd_sast_icdar15_v2.0_train.tar && cd ../
fi
-
+ if [ ${model_name} == "det_mv3_db_v2.0" ]; then
+ wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar --no-check-certificate
+ cd ./inference/ && tar xf det_mv3_db_v2.0_train.tar && cd ../
+ fi
+ if [ ${model_name} == "det_r50_db_v2.0" ]; then
+ wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar --no-check-certificate
+ cd ./inference/ && tar xf det_r50_vd_db_v2.0_train.tar && cd ../
+ fi
+fi
if [ ${MODE} = "klquant_whole_infer" ]; then
- if [ ${model_name} = "ch_ppocr_mobile_v2.0_det" ]; then
+ wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar --no-check-certificate
+ cd ./train_data/ && tar xf icdar2015_lite.tar
+ ln -s ./icdar2015_lite ./icdar2015 && cd ../
+ if [ ${model_name} = "ch_ppocr_mobile_v2.0_det_KL" ]; then
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar --no-check-certificate
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
cd ./inference && tar xf ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_det_data_50.tar && cd ../
@@ -152,6 +169,13 @@ if [ ${MODE} = "klquant_whole_infer" ]; then
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar --no-check-certificate
cd ./inference && tar xf ${eval_model_name}.tar && tar xf ch_det_data_50.tar && cd ../
fi
+ if [ ${model_name} = "ch_ppocr_mobile_v2.0_rec_KL" ]; then
+ wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar --no-check-certificate
+ wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar --no-check-certificate
+ wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar --no-check-certificate
+ cd ./train_data/ && tar xf ic15_data.tar && cd ../
+ cd ./inference && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf rec_inference.tar && cd ../
+ fi
fi
if [ ${MODE} = "cpp_infer" ];then
diff --git a/test_tipc/test_train_inference_python.sh b/test_tipc/test_train_inference_python.sh
index 7d035256527e01f31a4a1bc113caff3c744d859d..2a563022aa66c80bd2c9b6c2f822bee5ac3f3c18 100644
--- a/test_tipc/test_train_inference_python.sh
+++ b/test_tipc/test_train_inference_python.sh
@@ -90,36 +90,38 @@ infer_value1=$(func_parser_value "${lines[50]}")
# parser klquant_infer
if [ ${MODE} = "klquant_whole_infer" ]; then
- dataline=$(awk 'NR==1 NR==17{print}' $FILENAME)
+ dataline=$(awk 'NR==1, NR==17{print}' $FILENAME)
lines=(${dataline})
model_name=$(func_parser_value "${lines[1]}")
python=$(func_parser_value "${lines[2]}")
+ export_weight=$(func_parser_key "${lines[3]}")
+ save_infer_key=$(func_parser_key "${lines[4]}")
# parser inference model
- infer_model_dir_list=$(func_parser_value "${lines[3]}")
- infer_export_list=$(func_parser_value "${lines[4]}")
- infer_is_quant=$(func_parser_value "${lines[5]}")
+ infer_model_dir_list=$(func_parser_value "${lines[5]}")
+ infer_export_list=$(func_parser_value "${lines[6]}")
+ infer_is_quant=$(func_parser_value "${lines[7]}")
# parser inference
- inference_py=$(func_parser_value "${lines[6]}")
- use_gpu_key=$(func_parser_key "${lines[7]}")
- use_gpu_list=$(func_parser_value "${lines[7]}")
- use_mkldnn_key=$(func_parser_key "${lines[8]}")
- use_mkldnn_list=$(func_parser_value "${lines[8]}")
- cpu_threads_key=$(func_parser_key "${lines[9]}")
- cpu_threads_list=$(func_parser_value "${lines[9]}")
- batch_size_key=$(func_parser_key "${lines[10]}")
- batch_size_list=$(func_parser_value "${lines[10]}")
- use_trt_key=$(func_parser_key "${lines[11]}")
- use_trt_list=$(func_parser_value "${lines[11]}")
- precision_key=$(func_parser_key "${lines[12]}")
- precision_list=$(func_parser_value "${lines[12]}")
- infer_model_key=$(func_parser_key "${lines[13]}")
- image_dir_key=$(func_parser_key "${lines[14]}")
- infer_img_dir=$(func_parser_value "${lines[14]}")
- save_log_key=$(func_parser_key "${lines[15]}")
- benchmark_key=$(func_parser_key "${lines[16]}")
- benchmark_value=$(func_parser_value "${lines[16]}")
- infer_key1=$(func_parser_key "${lines[17]}")
- infer_value1=$(func_parser_value "${lines[17]}")
+ inference_py=$(func_parser_value "${lines[8]}")
+ use_gpu_key=$(func_parser_key "${lines[9]}")
+ use_gpu_list=$(func_parser_value "${lines[9]}")
+ use_mkldnn_key=$(func_parser_key "${lines[10]}")
+ use_mkldnn_list=$(func_parser_value "${lines[10]}")
+ cpu_threads_key=$(func_parser_key "${lines[11]}")
+ cpu_threads_list=$(func_parser_value "${lines[11]}")
+ batch_size_key=$(func_parser_key "${lines[12]}")
+ batch_size_list=$(func_parser_value "${lines[12]}")
+ use_trt_key=$(func_parser_key "${lines[13]}")
+ use_trt_list=$(func_parser_value "${lines[13]}")
+ precision_key=$(func_parser_key "${lines[14]}")
+ precision_list=$(func_parser_value "${lines[14]}")
+ infer_model_key=$(func_parser_key "${lines[15]}")
+ image_dir_key=$(func_parser_key "${lines[16]}")
+ infer_img_dir=$(func_parser_value "${lines[16]}")
+ save_log_key=$(func_parser_key "${lines[17]}")
+ benchmark_key=$(func_parser_key "${lines[18]}")
+ benchmark_value=$(func_parser_value "${lines[18]}")
+ infer_key1=$(func_parser_key "${lines[19]}")
+ infer_value1=$(func_parser_value "${lines[19]}")
fi
LOG_PATH="./test_tipc/output"
@@ -235,7 +237,7 @@ if [ ${MODE} = "whole_infer" ] || [ ${MODE} = "klquant_whole_infer" ]; then
fi
#run inference
is_quant=${infer_quant_flag[Count]}
- if [ ${MODE} = "klquant_infer" ]; then
+ if [ ${MODE} = "klquant_whole_infer" ]; then
is_quant="True"
fi
func_inference "${python}" "${inference_py}" "${save_infer_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant}
diff --git a/tools/infer_det.py b/tools/infer_det.py
index bb2cca7362e81494018aa3471664d60bef1b852c..1c679e0faf0d3ebdb6ca7ed4c317ce3eecfa910f 100755
--- a/tools/infer_det.py
+++ b/tools/infer_det.py
@@ -53,6 +53,7 @@ def draw_det_res(dt_boxes, config, img, img_name, save_path):
logger.info("The detected Image saved in {}".format(save_path))
+@paddle.no_grad()
def main():
global_config = config['Global']