diff --git a/test_tipc/configs/ch_PP-OCRv3_rec/train_fleet_infer_python.txt b/test_tipc/configs/ch_PP-OCRv3_rec/train_fleet_infer_python.txt new file mode 100644 index 0000000000000000000000000000000000000000..08e1fe9ba0aba4e3ab358be188aeed0212ad08ff --- /dev/null +++ b/test_tipc/configs/ch_PP-OCRv3_rec/train_fleet_infer_python.txt @@ -0,0 +1,53 @@ +===========================train_params=========================== +model_name:ch_PP-OCRv3_rec +python:python3.7 +gpu_list:192.168.0.1,192.168.0.2;0,1 +Global.use_gpu:True +Global.auto_cast:fp32 +Global.epoch_num:lite_train_lite_infer=3|whole_train_whole_infer=50 +Global.save_model_dir:./output/ +Train.loader.batch_size_per_card:lite_train_lite_infer=16|whole_train_whole_infer=64 +Global.pretrained_model:null +train_model_name:latest +train_infer_img_dir:./inference/rec_inference +null:null +## +trainer:norm_train +norm_train:tools/train.py -c test_tipc/configs/ch_PP-OCRv3_rec/ch_PP-OCRv3_rec_distillation.yml -o +pact_train:null +fpgm_train:null +distill_train:null +null:null +null:null +## +===========================eval_params=========================== +eval:null +null:null +## +===========================infer_params=========================== +Global.save_inference_dir:./output/ +Global.checkpoints: +norm_export:tools/export_model.py -c test_tipc/configs/ch_PP-OCRv3_rec/ch_PP-OCRv3_rec_distillation.yml -o +quant_export: +fpgm_export: +distill_export:null +export1:null +export2:null +inference_dir:Student +infer_model:./inference/ch_PP-OCRv3_rec_infer +infer_export:null +infer_quant:False +inference:tools/infer/predict_rec.py --rec_image_shape="3,48,320" +--use_gpu:True|False +--enable_mkldnn:False +--cpu_threads:6 +--rec_batch_num:1|6 +--use_tensorrt:False +--precision:fp32 +--rec_model_dir: +--image_dir:./inference/rec_inference +null:null +--benchmark:True +null:null +===========================infer_benchmark_params========================== +random_infer_input:[{float32,[3,48,320]}] diff --git a/test_tipc/docs/test_train_fleet_inference_python.md b/test_tipc/docs/test_train_fleet_inference_python.md new file mode 100644 index 0000000000000000000000000000000000000000..89cf5d5b6ddea29ae692e658d9a118851e474637 --- /dev/null +++ b/test_tipc/docs/test_train_fleet_inference_python.md @@ -0,0 +1,107 @@ +# Linux GPU/CPU 多机多卡训练推理测试 + +Linux GPU/CPU 多机多卡训练推理测试的主程序为`test_train_inference_python.sh`,可以测试基于Python的模型训练、评估、推理等基本功能。 + +## 1. 测试结论汇总 + +- 训练相关: + +| 算法名称 | 模型名称 | 多机多卡 | +| :----: | :----: | :----: | +| PP-OCRv3 | ch_PP-OCRv3_rec | 分布式训练 | + + +- 推理相关: + +| 算法名称 | 模型名称 | device_CPU | device_GPU | batchsize | +| :----: | :----: | :----: | :----: | :----: | +| PP-OCRv3 | ch_PP-OCRv3_rec | 支持 | 支持 | 1 | + + +## 2. 测试流程 + +运行环境配置请参考[文档](./install.md)的内容配置TIPC的运行环境。 + +### 2.1 功能测试 + +#### 2.1.1 修改配置文件 + +首先,修改配置文件中的`ip`设置: 假设两台机器的`ip`地址分别为`192.168.0.1`和`192.168.0.2`,则对应的配置文件`gpu_list`字段需要修改为`gpu_list:192.168.0.1,192.168.0.2;0,1`; `ip`地址查看命令为`ifconfig`。 + + +#### 2.1.2 准备数据 + +运行`prepare.sh`准备数据和模型,以配置文件`test_tipc/configs/ch_PP-OCRv3_rec/train_fleet_infer_python.txt`为例,数据准备命令如下所示。 + +```shell +bash test_tipc/prepare.sh test_tipc/configs/ch_PP-OCRv3_rec/train_fleet_infer_python.txt lite_train_lite_infer +``` + +**注意:** 由于是多机训练,这里需要在所有的节点上均运行启动上述命令,准备数据。 + +#### 2.1.3 修改起始端口并开始测试 + +在多机的节点上使用下面的命令设置分布式的起始端口(否则后面运行的时候会由于无法找到运行端口而hang住),一般建议设置在`10000~20000`之间。 + +```shell +export FLAGS_START_PORT=17000 +``` + +以配置文件`test_tipc/configs/ch_PP-OCRv3_rec/train_fleet_infer_python.txt`为例,测试方法如下所示。 + +```shell +bash test_tipc/test_train_inference_python.sh test_tipc/configs/ch_PP-OCRv3_rec/train_fleet_infer_python.txt lite_train_lite_infer +``` + +**注意:** 由于是多机训练,这里需要在所有的节点上均运行启动上述命令进行测试。 + + +#### 2.1.4 输出结果 + +输出结果如下,表示命令运行成功。 + +```bash + Run successfully with command - ch_PP-OCRv3_rec - python3.7 -m paddle.distributed.launch --ips=192.168.0.1,192.168.0.2 --gpus=0,1 tools/train.py -c test_tipc/configs/ch_PP-OCRv3_rec/ch_PP-OCRv3_rec_distillation.yml -o Global.use_gpu=True Global.save_model_dir=./test_tipc/output/ch_PP-OCRv3_rec/lite_train_lite_infer/norm_train_gpus_0,1_autocast_fp32_nodes_2 Global.epoch_num=3 Global.auto_cast=fp32 Train.loader.batch_size_per_card=16 ! + ...... + Run successfully with command - ch_PP-OCRv3_rec - python3.7 tools/infer/predict_rec.py --rec_image_shape="3,48,320" --use_gpu=False --enable_mkldnn=False --cpu_threads=6 --rec_model_dir=./test_tipc/output/ch_PP-OCRv3_rec/lite_train_lite_infer/norm_train_gpus_0,1_autocast_fp32_nodes_2/Student --rec_batch_num=1 --image_dir=./inference/rec_inference --benchmark=True --precision=fp32 > ./test_tipc/output/ch_PP-OCRv3_rec/lite_train_lite_infer/python_infer_cpu_usemkldnn_False_threads_6_precision_fp32_batchsize_1.log 2>&1 ! +``` + +在开启benchmark参数时,可以得到测试的详细数据,包含运行环境信息(系统版本、CUDA版本、CUDNN版本、驱动版本),Paddle版本信息,参数设置信息(运行设备、线程数、是否开启内存优化等),模型信息(模型名称、精度),数据信息(batchsize、是否为动态shape等),性能信息(CPU,GPU的占用、运行耗时、预处理耗时、推理耗时、后处理耗时),内容如下所示: + +``` +[2022/06/02 22:53:35] ppocr INFO: + +[2022/06/02 22:53:35] ppocr INFO: ---------------------- Env info ---------------------- +[2022/06/02 22:53:35] ppocr INFO: OS_version: Ubuntu 16.04 +[2022/06/02 22:53:35] ppocr INFO: CUDA_version: 10.1.243 +[2022/06/02 22:53:35] ppocr INFO: CUDNN_version: 7.6.5 +[2022/06/02 22:53:35] ppocr INFO: drivier_version: 460.32.03 +[2022/06/02 22:53:35] ppocr INFO: ---------------------- Paddle info ---------------------- +[2022/06/02 22:53:35] ppocr INFO: paddle_version: 2.3.0-rc0 +[2022/06/02 22:53:35] ppocr INFO: paddle_commit: 5d4980c052583fec022812d9c29460aff7cdc18b +[2022/06/02 22:53:35] ppocr INFO: log_api_version: 1.0 +[2022/06/02 22:53:35] ppocr INFO: ----------------------- Conf info ----------------------- +[2022/06/02 22:53:35] ppocr INFO: runtime_device: cpu +[2022/06/02 22:53:35] ppocr INFO: ir_optim: True +[2022/06/02 22:53:35] ppocr INFO: enable_memory_optim: True +[2022/06/02 22:53:35] ppocr INFO: enable_tensorrt: False +[2022/06/02 22:53:35] ppocr INFO: enable_mkldnn: False +[2022/06/02 22:53:35] ppocr INFO: cpu_math_library_num_threads: 6 +[2022/06/02 22:53:35] ppocr INFO: ----------------------- Model info ---------------------- +[2022/06/02 22:53:35] ppocr INFO: model_name: rec +[2022/06/02 22:53:35] ppocr INFO: precision: fp32 +[2022/06/02 22:53:35] ppocr INFO: ----------------------- Data info ----------------------- +[2022/06/02 22:53:35] ppocr INFO: batch_size: 1 +[2022/06/02 22:53:35] ppocr INFO: input_shape: dynamic +[2022/06/02 22:53:35] ppocr INFO: data_num: 6 +[2022/06/02 22:53:35] ppocr INFO: ----------------------- Perf info ----------------------- +[2022/06/02 22:53:35] ppocr INFO: cpu_rss(MB): 288.957, gpu_rss(MB): None, gpu_util: None% +[2022/06/02 22:53:35] ppocr INFO: total time spent(s): 0.4824 +[2022/06/02 22:53:35] ppocr INFO: preprocess_time(ms): 0.1136, inference_time(ms): 79.5877, postprocess_time(ms): 0.6945 +``` + +该信息可以在运行log中查看,以上面的`ch_PP-OCRv3_rec`为例,log位置在`./test_tipc/output/ch_PP-OCRv3_rec/lite_train_lite_infer/results_python.log`。 + +如果运行失败,也会在终端中输出运行失败的日志信息以及对应的运行命令。可以基于该命令,分析运行失败的原因。 + +**注意:** 由于分布式训练时,仅在`trainer_id=0`所在的节点中保存模型,因此其他的节点中在运行模型导出与推理时会报错,为正常现象。 diff --git a/test_tipc/readme.md b/test_tipc/readme.md index 8110f0073be248259c7cdd002d209c150a52fb71..effb2f168b6cc91012bef3de120de9e98a21dbda 100644 --- a/test_tipc/readme.md +++ b/test_tipc/readme.md @@ -138,6 +138,7 @@ bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobil ## 4. 开始测试 各功能测试中涉及混合精度、裁剪、量化等训练相关,及mkldnn、Tensorrt等多种预测相关参数配置,请点击下方相应链接了解更多细节和使用教程: - [test_train_inference_python 使用](docs/test_train_inference_python.md) :测试基于Python的模型训练、评估、推理等基本功能,包括裁剪、量化、蒸馏。 +- [test_train_fleet_inference_python 使用](./docs/test_train_fleet_inference_python.md):测试基于Python的多机多卡训练与推理等基本功能。 - [test_inference_cpp 使用](docs/test_inference_cpp.md):测试基于C++的模型推理。 - [test_serving 使用](docs/test_serving.md):测试基于Paddle Serving的服务化部署功能。 - [test_lite_arm_cpp 使用](docs/test_lite_arm_cpp.md):测试基于Paddle-Lite的ARM CPU端c++预测部署功能。 diff --git a/test_tipc/test_train_inference_python.sh b/test_tipc/test_train_inference_python.sh index 1527875beaad4b1b89373dbca8040e9870e54737..62a56a32ceb15e387f568f1b9857bced95166be3 100644 --- a/test_tipc/test_train_inference_python.sh +++ b/test_tipc/test_train_inference_python.sh @@ -315,7 +315,9 @@ else set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}") set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}") set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${train_use_gpu}") - if [ ${#ips} -le 26 ];then + # if length of ips >= 15, then it is seen as multi-machine + # 15 is the min length of ips info for multi-machine: 0.0.0.0,0.0.0.0 + if [ ${#ips} -le 15 ];then save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}" nodes=1 else @@ -330,7 +332,7 @@ else set_save_model=$(func_set_params "${save_model_key}" "${save_log}") if [ ${#gpu} -le 2 ];then # train with cpu or single gpu cmd="${python} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config} " - elif [ ${#ips} -le 26 ];then # train with multi-gpu + elif [ ${#ips} -le 15 ];then # train with multi-gpu cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config}" else # train with multi-machine cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config}"