未验证 提交 61b07f16 编写于 作者: M MissPenguin 提交者: GitHub

Merge pull request #4980 from changy1105/dygraph

[TIPC] Add js infer test
...@@ -29,3 +29,5 @@ paddleocr.egg-info/ ...@@ -29,3 +29,5 @@ paddleocr.egg-info/
/deploy/android_demo/app/PaddleLite/ /deploy/android_demo/app/PaddleLite/
/deploy/android_demo/app/.cxx/ /deploy/android_demo/app/.cxx/
/deploy/android_demo/app/cache/ /deploy/android_demo/app/cache/
test_tipc/web/models/
test_tipc/web/node_modules/
# Web 端基础预测功能测试
Web 端主要基于 Jest-Puppeteer 完成 e2e 测试,其中 Puppeteer 操作 Chrome 完成推理流程,Jest 完成测试流程。
>Puppeteer 是一个 Node 库,它提供了一个高级 API 来通过 DevTools 协议控制 Chromium 或 Chrome
>Jest 是一个 JavaScript 测试框架,旨在确保任何 JavaScript 代码的正确性。
#### 环境准备
* 安装 Node(包含 npm ) (https://nodejs.org/zh-cn/download/)
* 确认是否安装成功,在命令行执行
```sh
# 显示所安 node 版本号,即表示成功安装
node -v
```
* 确认 npm 是否安装成成
```sh
# npm 随着 node 一起安装,一般无需额外安装
# 显示所安 npm 版本号,即表示成功安装
npm -v
```
#### 使用
```sh
# web 测试环境准备
bash test_tipc/prepare_js.sh 'js_infer'
# web 推理测试
bash test_tipc/test_inference_js.sh
```
#### 流程设计
###### paddlejs prepare
1. 判断 node, npm 是否安装
2. 下载测试模型,当前检测模型是 ch_PP-OCRv2_det_infer ,识别模型是 ch_PP-OCRv2_rec_infer[1, 3, 32, 320]。如果需要替换模型,可直接将模型文件放在test_tipc/web/models/目录下。
- 文本检测模型:https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar
- 文本识别模型:https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar
- 文本识别模型[1, 3, 32, 320]:https://paddlejs.bj.bcebos.com/models/ch_PP-OCRv2_rec_infer.tar
- 保证较为准确的识别效果,需要将文本识别模型导出为输入shape是[1, 3, 32, 320]的静态模型
3. 转换模型, model.pdmodel model.pdiparams 转换为 model.json chunk.dat(检测模型保存地址:test_tipc/web/models/ch_PP-OCRv2/det,识别模型保存地址:test_tipc/web/models/ch_PP-OCRv2/rec)
4. 安装最新版本 ocr sdk @paddlejs-models/ocr@latest
5. 安装测试环境依赖 puppeteer、jest、jest-puppeteer,如果检查到已经安装,则不会进行二次安装
###### paddlejs infer test
1. Jest 执行 server command:`python3 -m http.server 9811` 开启本地服务
2. 启动 Jest 测试服务,通过 jest-puppeteer 插件完成 chrome 操作,加载 @paddlejs-models/ocr 脚本完成推理流程
3. 测试用例为原图识别后的文本结果与预期文本结果(expect.json)进行对比,测试通过有两个标准:
* 原图识别结果逐字符与预期结果对比,误差不超过 **10个字符**
* 原图识别结果每个文本框字符内容与预期结果进行相似度对比,相似度不小于 0.9(全部一致则相似度为1)。
只有满足上述两个标准,视为测试通过。通过为如下显示:
<img width="600" src="https://user-images.githubusercontent.com/43414102/146406599-80b30c66-f2f8-4f57-a68a-007c479ff0f7.png">
#!/bin/bash
set -o errexit
set -o nounset
shopt -s extglob
# paddlejs prepare 主要流程
# 1. 判断 node, npm 是否安装
# 2. 下载测试模型,当前检测模型是 ch_PP-OCRv2_det_infer ,识别模型是 ch_PP-OCRv2_rec_infer [1, 3, 32, 320]。如果需要替换模型,可直接将模型文件放在test_tipc/web/models/目录下。
# - 文本检测模型:https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar
# - 文本识别模型:https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar
# - 文本识别模型[1, 3, 32, 320]:https://paddlejs.bj.bcebos.com/models/ch_PP-OCRv2_rec_infer.tar
# - 保证较为准确的识别效果,需要将文本识别模型导出为输入shape[1, 3, 32, 320]的静态模型
# 3. 转换模型, model.pdmodel model.pdiparams 转换为 model.json chunk.dat(检测模型保存地址:test_tipc/web/models/ch_PP-OCRv2/det,识别模型保存地址:test_tipc/web/models/ch_PP-OCRv2/rec)
# 4. 安装最新版本 ocr sdk @paddlejs-models/ocr@latest
# 5. 安装测试环境依赖 puppeteer、jest、jest-puppeteer,如果检查到已经安装,则不会进行二次安装
# 判断是否安装了node
if ! type node >/dev/null 2>&1; then
echo -e "\033[31m node 未安装 \033[0m"
exit
fi
# 判断是否安装了npm
if ! type npm >/dev/null 2>&1; then
echo -e "\033[31m npm 未安装 \033[0m"
exit
fi
# MODE be 'js_infer'
MODE=$1
# js_infer MODE , load model file and convert model to js_infer
if [ ${MODE} != "js_infer" ];then
echo "Please change mode to 'js_infer'"
exit
fi
# saved_model_name
det_saved_model_name=ch_PP-OCRv2_det_infer
rec_saved_model_name=ch_PP-OCRv2_rec_infer
# model_path
model_path=test_tipc/web/models/
rm -rf $model_path
echo ${model_path}${det_saved_model_name}
echo ${model_path}${rec_saved_model_name}
# download ocr_det inference model
wget -nc -P $model_path https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar
cd $model_path && tar xf ch_PP-OCRv2_det_infer.tar && cd ../../../
# download ocr_rec inference model
wget -nc -P $model_path https://paddlejs.bj.bcebos.com/models/ch_PP-OCRv2_rec_infer.tar
cd $model_path && tar xf ch_PP-OCRv2_rec_infer.tar && cd ../../../
MYDIR=`pwd`
echo $MYDIR
pip3 install paddlejsconverter
# convert inference model to web model: model.json、chunk.dat
paddlejsconverter \
--modelPath=$model_path$det_saved_model_name/inference.pdmodel \
--paramPath=$model_path$det_saved_model_name/inference.pdiparams \
--outputDir=$model_path$det_saved_model_name/ \
paddlejsconverter \
--modelPath=$model_path$rec_saved_model_name/inference.pdmodel \
--paramPath=$model_path$rec_saved_model_name/inference.pdiparams \
--outputDir=$model_path$rec_saved_model_name/ \
# always install latest ocr sdk
cd test_tipc/web
echo -e "\033[33m Installing the latest ocr sdk... \033[0m"
npm install @paddlejs-models/ocr@latest
npm info @paddlejs-models/ocr
echo -e "\033[32m The latest ocr sdk installed completely.!~ \033[0m"
# install dependencies
if [ `npm list --dept 0 | grep puppeteer | wc -l` -ne 0 ] && [ `npm list --dept 0 | grep jest | wc -l` -ne 0 ];then
echo -e "\033[32m Dependencies have installed \033[0m"
else
echo -e "\033[33m Installing dependencies ... \033[0m"
npm install jest jest-puppeteer puppeteer
echo -e "\033[32m Dependencies installed completely.!~ \033[0m"
fi
# del package-lock.json
rm package-lock.json
#!/bin/bash
set -o errexit
set -o nounset
cd test_tipc/web
# run ocr test in chrome
./node_modules/.bin/jest --config ./jest.config.js
{
"text": [
"纯臻营养护发素",
"产品信息/参数",
"(45元/每公斤,100公斤起订)",
"每瓶22元,1000瓶起订)",
"【品牌】:代加工方式/OEMODM",
"【品名】:纯臻营养护发素",
"【产品编号】:YM-X-3011",
"ODMOEM",
"【净含量】:220ml",
"【适用人群】:适合所有肤质",
"【主要成分】:鲸蜡硬脂醇、燕麦β-葡聚",
"糖、椰油酰胺丙基甜菜碱、泛醌",
"(成品包材)",
"【主要功能】:可紧致头发磷层,从而达到",
"即时持久改善头发光泽的效果,给干燥的头",
"发足够的滋养"
]
}
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta http-equiv="X-UA-Compatible" content="ie=edge">
<title>ocr test</title>
</head>
<body>
<img id="ocr" src="./test.jpg" />
</body>
<script src="./node_modules/@paddlejs-models/ocr/lib/index.js"></script>
</html>
\ No newline at end of file
const expectData = require('./expect.json');
describe('e2e test ocr model', () => {
beforeAll(async () => {
await page.goto(PATH);
});
it('ocr infer and diff test', async () => {
page.on('console', msg => console.log('PAGE LOG:', msg.text()));
const text = await page.evaluate(async () => {
const $ocr = document.querySelector('#ocr');
const ocr = paddlejs['ocr'];
await ocr.init('./models/ch_PP-OCRv2_det_infer', './models/ch_PP-OCRv2_rec_infer');
const res = await ocr.recognize($ocr);
return res.text;
});
// 模型文字识别结果与预期结果diff的字符数
let diffNum = 0;
// 文本框字符串相似度
let similarity = 0;
// 预期字符diff数
const expectedDiffNum = 10;
// 预期文本框字符串相似度
const expecteSimilarity = 0.9;
// 预期文本内容
const expectResult = expectData.text;
expectResult && expectResult.forEach((item, index) => {
const word = text[index];
// 逐字符对比
for(let i = 0; i < item.length; i++) {
if (item[i] !== word[i]) {
console.log('expect: ', item[i], ' word: ', word[i]);
diffNum++;
}
}
// 文本框字符串相似度对比
const s = similar(item, word);
similarity += s;
});
similarity = similarity / expectResult.length;
expect(diffNum).toBeLessThanOrEqual(expectedDiffNum);
expect(similarity).toBeGreaterThanOrEqual(expecteSimilarity);
function similar(string, expect) {
if (!string || !expect) {
return 0;
}
const length = string.length > expect.length ? string.length : expect.length;
const n = string.length;
const m = expect.length;
let data = [];
const min = (a, b, c) => {
return a < b ? (a < c ? a : c) : (b < c ? b : c);
};
let i, j, si, ej, cost;
if (n === 0) return m;
if (m === 0) return n;
for (i = 0; i <= n; i++) {
data[i] = [];
[i][0] = i
}
for (j = 0; j <= m; j++) {
data[0][j] = j;
}
for (i = 1; i <= n; i++) {
si = string.charAt(i - 1);
for (j = 1; j <= m; j++) {
ej = expect.charAt(j - 1);
cost = si === ej ? 0 : 1;
data[i][j] = min(data[i - 1][j] + 1, data[i][j - 1] + 1, data[i - 1][j - 1] + cost);
}
}
return (1 - data[n][m] / length);
}
});
});
// jest-puppeteer.config.js
module.exports = {
launch: {
headless: false,
product: 'chrome'
},
browserContext: 'default',
server: {
command: 'python3 -m http.server 9811',
port: 9811,
launchTimeout: 10000,
debug: true
}
};
// For a detailed explanation regarding each configuration property and type check, visit:
// https://jestjs.io/docs/en/configuration.html
module.exports = {
preset: 'jest-puppeteer',
// All imported modules in your tests should be mocked automatically
// automock: false,
// Automatically clear mock calls and instances between every test
clearMocks: true,
// An object that configures minimum threshold enforcement for coverage results
// coverageThreshold: undefined,
// A set of global variables that need to be available in all test environments
globals: {
PATH: 'http://localhost:9811'
},
// The maximum amount of workers used to run your tests. Can be specified as % or a number. E.g. maxWorkers: 10% will use 10% of your CPU amount + 1 as the maximum worker number. maxWorkers: 2 will use a maximum of 2 workers.
// maxWorkers: "50%",
// An array of directory names to be searched recursively up from the requiring module's location
// moduleDirectories: [
// "node_modules"
// ],
// An array of file extensions your modules use
moduleFileExtensions: [
'js',
'json',
'jsx',
'ts',
'tsx',
'node'
],
// The root directory that Jest should scan for tests and modules within
// rootDir: undefined,
// A list of paths to directories that Jest should use to search for files in
roots: [
'<rootDir>'
],
// Allows you to use a custom runner instead of Jest's default test runner
// runner: "jest-runner",
// The paths to modules that run some code to configure or set up the testing environment before each test
// setupFiles: [],
// A list of paths to modules that run some code to configure or set up the testing framework before each test
// setupFilesAfterEnv: [],
// The number of seconds after which a test is considered as slow and reported as such in the results.
// slowTestThreshold: 5,
// A list of paths to snapshot serializer modules Jest should use for snapshot testing
// snapshotSerializers: [],
// The test environment that will be used for testing
// testEnvironment: 'jsdom',
// Options that will be passed to the testEnvironment
// testEnvironmentOptions: {},
// An array of regexp pattern strings that are matched against all test paths, matched tests are skipped
testPathIgnorePatterns: [
'/node_modules/'
],
// The regexp pattern or array of patterns that Jest uses to detect test files
testRegex: '.(.+)\\.test\\.(js|ts)$',
// This option allows the use of a custom results processor
// testResultsProcessor: undefined,
// This option allows use of a custom test runner
// testRunner: "jest-circus/runner",
// This option sets the URL for the jsdom environment. It is reflected in properties such as location.href
testURL: 'http://localhost:9898/',
// Setting this value to "fake" allows the use of fake timers for functions such as "setTimeout"
// timers: "real",
// A map from regular expressions to paths to transformers
transform: {
'^.+\\.js$': 'babel-jest'
},
// An array of regexp pattern strings that are matched against all source file paths, matched files will skip transformation
transformIgnorePatterns: [
'/node_modules/',
'\\.pnp\\.[^\\/]+$'
],
// An array of regexp pattern strings that are matched against all modules before the module loader will automatically return a mock for them
// unmockedModulePathPatterns: undefined,
// Indicates whether each individual test should be reported during the run
verbose: true,
// An array of regexp patterns that are matched against all source file paths before re-running tests in watch mode
// watchPathIgnorePatterns: [],
// Whether to use watchman for file crawling
// watchman: true,
testTimeout: 50000
};
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册