Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
weixin_41840029
PaddleOCR
提交
602b6c18
P
PaddleOCR
项目概览
weixin_41840029
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
602b6c18
编写于
6月 28, 2021
作者:
L
LDOUBLEV
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'fix_infer_mode' of
https://github.com/LDOUBLEV/PaddleOCR
into fix_infer_mode
上级
d87be123
ade33ef3
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
10 addition
and
36 deletion
+10
-36
ppocr/modeling/transforms/tps.py
ppocr/modeling/transforms/tps.py
+2
-9
tools/infer/predict_det.py
tools/infer/predict_det.py
+1
-0
tools/infer/utility.py
tools/infer/utility.py
+7
-27
未找到文件。
ppocr/modeling/transforms/tps.py
浏览文件 @
602b6c18
...
...
@@ -230,15 +230,8 @@ class GridGenerator(nn.Layer):
def
build_inv_delta_C_paddle
(
self
,
C
):
""" Return inv_delta_C which is needed to calculate T """
F
=
self
.
F
hat_C
=
paddle
.
zeros
((
F
,
F
),
dtype
=
'float64'
)
# F x F
for
i
in
range
(
0
,
F
):
for
j
in
range
(
i
,
F
):
if
i
==
j
:
hat_C
[
i
,
j
]
=
1
else
:
r
=
paddle
.
norm
(
C
[
i
]
-
C
[
j
])
hat_C
[
i
,
j
]
=
r
hat_C
[
j
,
i
]
=
r
hat_eye
=
paddle
.
eye
(
F
,
dtype
=
'float64'
)
# F x F
hat_C
=
paddle
.
norm
(
C
.
reshape
([
1
,
F
,
2
])
-
C
.
reshape
([
F
,
1
,
2
]),
axis
=
2
)
+
hat_eye
hat_C
=
(
hat_C
**
2
)
*
paddle
.
log
(
hat_C
)
delta_C
=
paddle
.
concat
(
# F+3 x F+3
[
...
...
tools/infer/predict_det.py
浏览文件 @
602b6c18
...
...
@@ -235,3 +235,4 @@ if __name__ == "__main__":
"det_res_{}"
.
format
(
img_name_pure
))
cv2
.
imwrite
(
img_path
,
src_im
)
logger
.
info
(
"The visualized image saved in {}"
.
format
(
img_path
))
tools/infer/utility.py
浏览文件 @
602b6c18
...
...
@@ -37,6 +37,7 @@ def init_args():
parser
.
add_argument
(
"--use_gpu"
,
type
=
str2bool
,
default
=
True
)
parser
.
add_argument
(
"--ir_optim"
,
type
=
str2bool
,
default
=
True
)
parser
.
add_argument
(
"--use_tensorrt"
,
type
=
str2bool
,
default
=
False
)
parser
.
add_argument
(
"--min_subgraph_size"
,
type
=
int
,
default
=
3
)
parser
.
add_argument
(
"--precision"
,
type
=
str
,
default
=
"fp32"
)
parser
.
add_argument
(
"--gpu_mem"
,
type
=
int
,
default
=
500
)
...
...
@@ -165,12 +166,14 @@ def create_predictor(args, mode, logger):
config
.
enable_tensorrt_engine
(
precision_mode
=
inference
.
PrecisionType
.
Float32
,
max_batch_size
=
args
.
max_batch_size
,
min_subgraph_size
=
3
)
# skip the minmum trt subgraph
if
mode
==
"det"
and
"mobile"
in
model_file_path
:
min_subgraph_size
=
args
.
min_subgraph_size
)
# skip the minmum trt subgraph
if
mode
==
"det"
:
min_input_shape
=
{
"x"
:
[
1
,
3
,
50
,
50
],
"conv2d_92.tmp_0"
:
[
1
,
96
,
20
,
20
],
"conv2d_91.tmp_0"
:
[
1
,
96
,
10
,
10
],
"conv2d_59.tmp_0"
:
[
1
,
96
,
20
,
20
],
"nearest_interp_v2_1.tmp_0"
:
[
1
,
96
,
10
,
10
],
"nearest_interp_v2_2.tmp_0"
:
[
1
,
96
,
20
,
20
],
"nearest_interp_v2_3.tmp_0"
:
[
1
,
24
,
20
,
20
],
...
...
@@ -183,6 +186,7 @@ def create_predictor(args, mode, logger):
"x"
:
[
1
,
3
,
2000
,
2000
],
"conv2d_92.tmp_0"
:
[
1
,
96
,
400
,
400
],
"conv2d_91.tmp_0"
:
[
1
,
96
,
200
,
200
],
"conv2d_59.tmp_0"
:
[
1
,
96
,
400
,
400
],
"nearest_interp_v2_1.tmp_0"
:
[
1
,
96
,
200
,
200
],
"nearest_interp_v2_2.tmp_0"
:
[
1
,
96
,
400
,
400
],
"nearest_interp_v2_3.tmp_0"
:
[
1
,
24
,
400
,
400
],
...
...
@@ -195,6 +199,7 @@ def create_predictor(args, mode, logger):
"x"
:
[
1
,
3
,
640
,
640
],
"conv2d_92.tmp_0"
:
[
1
,
96
,
160
,
160
],
"conv2d_91.tmp_0"
:
[
1
,
96
,
80
,
80
],
"conv2d_59.tmp_0"
:
[
1
,
96
,
160
,
160
],
"nearest_interp_v2_1.tmp_0"
:
[
1
,
96
,
80
,
80
],
"nearest_interp_v2_2.tmp_0"
:
[
1
,
96
,
160
,
160
],
"nearest_interp_v2_3.tmp_0"
:
[
1
,
24
,
160
,
160
],
...
...
@@ -203,31 +208,6 @@ def create_predictor(args, mode, logger):
"elementwise_add_7"
:
[
1
,
56
,
40
,
40
],
"nearest_interp_v2_0.tmp_0"
:
[
1
,
96
,
40
,
40
]
}
if
mode
==
"det"
and
"server"
in
model_file_path
:
min_input_shape
=
{
"x"
:
[
1
,
3
,
50
,
50
],
"conv2d_59.tmp_0"
:
[
1
,
96
,
20
,
20
],
"nearest_interp_v2_2.tmp_0"
:
[
1
,
96
,
20
,
20
],
"nearest_interp_v2_3.tmp_0"
:
[
1
,
24
,
20
,
20
],
"nearest_interp_v2_4.tmp_0"
:
[
1
,
24
,
20
,
20
],
"nearest_interp_v2_5.tmp_0"
:
[
1
,
24
,
20
,
20
]
}
max_input_shape
=
{
"x"
:
[
1
,
3
,
2000
,
2000
],
"conv2d_59.tmp_0"
:
[
1
,
96
,
400
,
400
],
"nearest_interp_v2_2.tmp_0"
:
[
1
,
96
,
400
,
400
],
"nearest_interp_v2_3.tmp_0"
:
[
1
,
24
,
400
,
400
],
"nearest_interp_v2_4.tmp_0"
:
[
1
,
24
,
400
,
400
],
"nearest_interp_v2_5.tmp_0"
:
[
1
,
24
,
400
,
400
]
}
opt_input_shape
=
{
"x"
:
[
1
,
3
,
640
,
640
],
"conv2d_59.tmp_0"
:
[
1
,
96
,
160
,
160
],
"nearest_interp_v2_2.tmp_0"
:
[
1
,
96
,
160
,
160
],
"nearest_interp_v2_3.tmp_0"
:
[
1
,
24
,
160
,
160
],
"nearest_interp_v2_4.tmp_0"
:
[
1
,
24
,
160
,
160
],
"nearest_interp_v2_5.tmp_0"
:
[
1
,
24
,
160
,
160
]
}
elif
mode
==
"rec"
:
min_input_shape
=
{
"x"
:
[
args
.
rec_batch_num
,
3
,
32
,
10
]}
max_input_shape
=
{
"x"
:
[
args
.
rec_batch_num
,
3
,
32
,
2000
]}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录