diff --git a/benchmark/run_det.sh b/benchmark/run_det.sh index 4631f6ff0a60296cebf03821ecd17cd01d33664a..c94af85c365d66b2e0f0a143f14f0340d2f56a73 100644 --- a/benchmark/run_det.sh +++ b/benchmark/run_det.sh @@ -1,10 +1,11 @@ # 提供可稳定复现性能的脚本,默认在标准docker环境内py37执行: paddlepaddle/paddle:latest-gpu-cuda10.1-cudnn7 paddle=2.1.2 py=37 # 执行目录:需说明 -# cd PaddleOCR +cd PaddleOCR # 1 安装该模型需要的依赖 (如需开启优化策略请注明) -# python3.7 -m pip install -r requirements.txt +python3.7 -m pip install -r requirements.txt # 2 拷贝该模型需要数据、预训练模型 -# wget -p ./tain_data/ xxxxx +wget -p ./tain_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar && cd train_data && tar xf icdar2015.tar && cd ../ +wget -p ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams # 3 批量运行(如不方便批量,1,2需放到单个模型中) model_mode_list=(det_mv3_db det_r50_vd_east) @@ -15,11 +16,11 @@ for model_mode in ${model_mode_list[@]}; do for bs_item in ${bs_list[@]}; do echo "index is speed, 1gpus, begin, ${model_name}" run_mode=sp - CUDA_VISIBLE_DEVICES=7 bash benchmark/run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 10 ${model_mode} # (5min) + CUDA_VISIBLE_DEVICES=0 bash benchmark/run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 10 ${model_mode} # (5min) sleep 60 echo "index is speed, 8gpus, run_mode is multi_process, begin, ${model_name}" run_mode=mp - CUDA_VISIBLE_DEVICES=6,7 bash benchmark/run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 10 ${model_mode} + CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash benchmark/run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 10 ${model_mode} sleep 60 done done diff --git a/configs/det/det_r50_vd_east.yml b/configs/det/det_r50_vd_east.yml index 0253c5bd9940fa6c0ec7da2c6639c1bc060842ca..e84a5fa7a7af34bde5e0abc6fed2e01f6ce42e6b 100644 --- a/configs/det/det_r50_vd_east.yml +++ b/configs/det/det_r50_vd_east.yml @@ -8,7 +8,7 @@ Global: # evaluation is run every 5000 iterations after the 4000th iteration eval_batch_step: [4000, 5000] cal_metric_during_train: False - pretrained_model: ./pretrain_models/ResNet50_vd_pretrained/ + pretrained_model: ./pretrain_models/ResNet50_vd_pretrained checkpoints: save_inference_dir: use_visualdl: False