diff --git a/deploy/cpp_infer/docs/windows_vs2019_build.md b/deploy/cpp_infer/docs/windows_vs2019_build.md index bcaefa46f83a30a4c232add78dc2e9f521b9f84f..2f5c5818d7d977c78c15e29d7c1bbebd98ce99bf 100644 --- a/deploy/cpp_infer/docs/windows_vs2019_build.md +++ b/deploy/cpp_infer/docs/windows_vs2019_build.md @@ -121,7 +121,7 @@ CUDA_LIB、CUDNN_LIB、TENSORRT_DIR、WITH_GPU、WITH_TENSORRT ``` cd /d D:\projects\cpp\PaddleOCR\deploy\cpp_infer ``` -可执行文件`ppocr.exe`即为样例的预测程序,其主要使用方法如下,更多使用方法可以参考[说明文档](../readme.md)`运行demo`部分。 +可执行文件`ppocr.exe`即为样例的预测程序,其主要使用方法如下,更多使用方法可以参考[说明文档](../readme_ch.md)`运行demo`部分。 ```shell # 切换终端编码为utf8 diff --git a/ppocr/postprocess/db_postprocess.py b/ppocr/postprocess/db_postprocess.py index dfe107816c195b36bf06568843b008bf66ff24c7..244825b76a47162419b4ae68103b182331be1791 100755 --- a/ppocr/postprocess/db_postprocess.py +++ b/ppocr/postprocess/db_postprocess.py @@ -144,9 +144,9 @@ class DBPostProcess(object): np.round(box[:, 0] / width * dest_width), 0, dest_width) box[:, 1] = np.clip( np.round(box[:, 1] / height * dest_height), 0, dest_height) - boxes.append(box.astype(np.int16)) + boxes.append(box.astype("int32")) scores.append(score) - return np.array(boxes, dtype=np.int16), scores + return np.array(boxes, dtype="int32"), scores def unclip(self, box, unclip_ratio): poly = Polygon(box) @@ -185,15 +185,15 @@ class DBPostProcess(object): ''' h, w = bitmap.shape[:2] box = _box.copy() - xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1) - xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1) - ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1) - ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1) + xmin = np.clip(np.floor(box[:, 0].min()).astype("int32"), 0, w - 1) + xmax = np.clip(np.ceil(box[:, 0].max()).astype("int32"), 0, w - 1) + ymin = np.clip(np.floor(box[:, 1].min()).astype("int32"), 0, h - 1) + ymax = np.clip(np.ceil(box[:, 1].max()).astype("int32"), 0, h - 1) mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8) box[:, 0] = box[:, 0] - xmin box[:, 1] = box[:, 1] - ymin - cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1) + cv2.fillPoly(mask, box.reshape(1, -1, 2).astype("int32"), 1) return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0] def box_score_slow(self, bitmap, contour): @@ -214,7 +214,7 @@ class DBPostProcess(object): contour[:, 0] = contour[:, 0] - xmin contour[:, 1] = contour[:, 1] - ymin - cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype(np.int32), 1) + cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype("int32"), 1) return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0] def __call__(self, outs_dict, shape_list):