diff --git a/configs/det/ch_PP-OCRv2/ch_PP-OCR_det_cml.yml b/configs/det/ch_PP-OCRv2/ch_PP-OCR_det_cml.yml index 0f08909add17d8c73ad6e1b00e17d4c351def7e5..ab484a44833a405513d7f2b4079a4da4c2e403c8 100644 --- a/configs/det/ch_PP-OCRv2/ch_PP-OCR_det_cml.yml +++ b/configs/det/ch_PP-OCRv2/ch_PP-OCR_det_cml.yml @@ -141,6 +141,7 @@ Train: img_mode: BGR channel_first: False - DetLabelEncode: # Class handling label + - CopyPaste: - IaaAugment: augmenter_args: - { 'type': Fliplr, 'args': { 'p': 0.5 } } diff --git a/configs/det/ch_PP-OCRv2/ch_PP-OCR_det_distill.yml b/configs/det/ch_PP-OCRv2/ch_PP-OCR_det_distill.yml index 1159d71bf94c330e26c3009b38c5c2b4a9c96f52..46daeeb86d004772a6fb964d602369dcd53b3a01 100644 --- a/configs/det/ch_PP-OCRv2/ch_PP-OCR_det_distill.yml +++ b/configs/det/ch_PP-OCRv2/ch_PP-OCR_det_distill.yml @@ -68,8 +68,7 @@ Loss: ohem_ratio: 3 - DistillationDBLoss: weight: 1.0 - model_name_list: ["Student", "Teacher"] - # key: maps + model_name_list: ["Student"] name: DBLoss balance_loss: true main_loss_type: DiceLoss @@ -116,6 +115,7 @@ Train: img_mode: BGR channel_first: False - DetLabelEncode: # Class handling label + - CopyPaste: - IaaAugment: augmenter_args: - { 'type': Fliplr, 'args': { 'p': 0.5 } } diff --git a/configs/det/ch_PP-OCRv2/ch_PP-OCR_det_dml.yml b/configs/det/ch_PP-OCRv2/ch_PP-OCR_det_dml.yml index 7fe2d2e1a065b54d0e2479475f5f67ac5e38a166..bfbc3b6268cf521acb035be33ced9141046fc430 100644 --- a/configs/det/ch_PP-OCRv2/ch_PP-OCR_det_dml.yml +++ b/configs/det/ch_PP-OCRv2/ch_PP-OCR_det_dml.yml @@ -118,6 +118,7 @@ Train: img_mode: BGR channel_first: False - DetLabelEncode: # Class handling label + - CopyPaste: - IaaAugment: augmenter_args: - { 'type': Fliplr, 'args': { 'p': 0.5 } } diff --git a/configs/e2e/e2e_r50_vd_pg.yml b/configs/e2e/e2e_r50_vd_pg.yml index 4a6e19f4461c7236f3a9a5253437eff97fa72f67..c4c5226e796a42db723ce78ef65473e357c25dc6 100644 --- a/configs/e2e/e2e_r50_vd_pg.yml +++ b/configs/e2e/e2e_r50_vd_pg.yml @@ -94,7 +94,7 @@ Eval: label_file_list: [./train_data/total_text/test/test.txt] transforms: - DecodeImage: # load image - img_mode: RGB + img_mode: BGR channel_first: False - E2ELabelEncodeTest: - E2EResizeForTest: @@ -111,4 +111,4 @@ Eval: shuffle: False drop_last: False batch_size_per_card: 1 # must be 1 - num_workers: 2 \ No newline at end of file + num_workers: 2 diff --git a/doc/doc_ch/enhanced_ctc_loss.md b/doc/doc_ch/enhanced_ctc_loss.md index 309dc712dc0242b859f934338be96e6648f81031..5525c7785f0a8fc642cebc82674400c2487558f9 100644 --- a/doc/doc_ch/enhanced_ctc_loss.md +++ b/doc/doc_ch/enhanced_ctc_loss.md @@ -16,7 +16,7 @@ Focal Loss 出自论文《Focal Loss for Dense Object Detection》, 该loss最 从上图可以看到, 当γ> 0时,调整系数(1-y’)^γ 赋予易分类样本损失一个更小的权重,使得网络更关注于困难的、错分的样本。 调整因子γ用于调节简单样本权重降低的速率,当γ为0时即为交叉熵损失函数,当γ增加时,调整因子的影响也会随之增大。实验发现γ为2是最优。平衡因子α用来平衡正负样本本身的比例不均,文中α取0.25。 -对于经典的CTC算法,假设某个特征序列(f1, f2, ......ft), 经过CTC解码之后结果等于label的概率为y’, 则CTC解码结果不为label的概率即为(1-y’);不难发现 CTCLoss值和y’有如下关系: +对于经典的CTC算法,假设某个特征序列(f1, f2, ......ft), 经过CTC解码之后结果等于label的概率为y’, 则CTC解码结果不为label的概率即为(1-y’);不难发现, CTCLoss值和y’有如下关系:
@@ -38,7 +38,7 @@ A-CTC Loss是CTC Loss + ACE Loss的简称。 其中ACE Loss出自论文< Aggrega -虽然ACELoss确实如上图所说,可以处理2D预测,在内存占用及推理速度方面具备优势,但在实践过程中,我们发现单独使用ACE Loss, 识别效果并不如CTCLoss. 因此,我们尝试将CTCLoss和ACELoss进行组合,同时以CTCLoss为主,将ACELoss 定位为一个辅助监督loss。 这一尝试收到了效果,在我们内部的实验数据集上,相比单独使用CTCLoss,识别准确率可以提升1%左右。 +虽然ACELoss确实如上图所说,可以处理2D预测,在内存占用及推理速度方面具备优势,但在实践过程中,我们发现单独使用ACE Loss, 识别效果并不如CTCLoss. 因此,我们尝试将CTCLoss和ACELoss进行结合,同时以CTCLoss为主,将ACELoss 定位为一个辅助监督loss。 这一尝试收到了效果,在我们内部的实验数据集上,相比单独使用CTCLoss,识别准确率可以提升1%左右。 A_CTC Loss定义如下:
@@ -47,7 +47,7 @@ A_CTC Loss定义如下: 实验中,λ = 0.1. ACE loss实现代码见: [ace_loss.py](../../ppocr/losses/ace_loss.py) ## 3. C-CTC Loss -C-CTC Loss是CTC Loss + Center Loss的简称。 其中Center Loss出自论文 < A Discriminative Feature Learning Approach for Deep Face Recognition>. 最早用于人脸识别任务,用于增大累间距离,减小类内距离, 是Metric Learning领域一种较早的、也比较常用的一种算法。 +C-CTC Loss是CTC Loss + Center Loss的简称。 其中Center Loss出自论文 < A Discriminative Feature Learning Approach for Deep Face Recognition>. 最早用于人脸识别任务,用于增大类间距离,减小类内距离, 是Metric Learning领域一种较早的、也比较常用的一种算法。 在中文OCR识别任务中,通过对badcase分析, 我们发现中文识别的一大难点是相似字符多,容易误识。 由此我们想到是否可以借鉴Metric Learing的想法, 增大相似字符的类间距,从而提高识别准确率。然而,MetricLearning主要用于图像识别领域,训练数据的标签为一个固定的值;而对于OCR识别来说,其本质上是一个序列识别任务,特征和label之间并不具有显式的对齐关系,因此两者如何结合依然是一个值得探索的方向。 通过尝试Arcmargin, Cosmargin等方法, 我们最终发现Centerloss 有助于进一步提升识别的准确率。C_CTC Loss定义如下:
diff --git a/doc/doc_ch/environment.md b/doc/doc_ch/environment.md index a55008100312f50e0786dca49eaa186afc49b3b2..3a266c4bb8fe5516f844bea9f0aa21359d51660e 100644 --- a/doc/doc_ch/environment.md +++ b/doc/doc_ch/environment.md @@ -1,6 +1,13 @@ # 运行环境准备 + Windows和Mac用户推荐使用Anaconda搭建Python环境,Linux用户建议使用docker搭建PyThon环境。 +推荐环境: +- PaddlePaddle >= 2.0.0 (2.1.2) +- python3.7 +- CUDA10.1 / CUDA10.2 +- CUDNN 7.6 + 如果对于Python环境熟悉的用户可以直接跳到第2步安装PaddlePaddle。 * [1. Python环境搭建](#1) @@ -123,13 +130,13 @@ Windows和Mac用户推荐使用Anaconda搭建Python环境,Linux用户建议使 # !! Contents within this block are managed by 'conda init' !! __conda_setup="$('/Users/xxx/opt/anaconda3/bin/conda' 'shell.bash' 'hook' 2> /dev/null)" if [ $? -eq 0 ]; then - eval "$__conda_setup" + eval "$__conda_setup" else - if [ -f "/Users/xxx/opt/anaconda3/etc/profile.d/conda.sh" ]; then - . "/Users/xxx/opt/anaconda3/etc/profile.d/conda.sh" - else - export PATH="/Users/xxx/opt/anaconda3/bin:$PATH" - fi + if [ -f "/Users/xxx/opt/anaconda3/etc/profile.d/conda.sh" ]; then + . "/Users/xxx/opt/anaconda3/etc/profile.d/conda.sh" + else + export PATH="/Users/xxx/opt/anaconda3/bin:$PATH" + fi fi unset __conda_setup # <<< conda initialize <<< @@ -294,11 +301,12 @@ cd /home/Projects # 首次运行需创建一个docker容器,再次运行时不需要运行当前命令 # 创建一个名字为ppocr的docker容器,并将当前目录映射到容器的/paddle目录下 -如果您希望在CPU环境下使用docker,使用docker而不是nvidia-docker创建docker -sudo docker run --name ppocr -v $PWD:/paddle --network=host -it paddlepaddle/paddle:latest-dev-cuda10.1-cudnn7-gcc82 /bin/bash +#如果您希望在CPU环境下使用docker,使用docker而不是nvidia-docker创建docker +sudo docker run --name ppocr -v $PWD:/paddle --network=host -it registry.baidubce.com/paddlepaddle/paddle:2.1.3-gpu-cuda10.2-cudnn7 /bin/bash -如果使用CUDA10,请运行以下命令创建容器,设置docker容器共享内存shm-size为64G,建议设置32G以上 -sudo nvidia-docker run --name ppocr -v $PWD:/paddle --shm-size=64G --network=host -it paddlepaddle/paddle:latest-dev-cuda10.1-cudnn7-gcc82 /bin/bash +#如果使用CUDA10,请运行以下命令创建容器,设置docker容器共享内存shm-size为64G,建议设置32G以上 +# 如果是CUDA11+CUDNN8,推荐使用镜像registry.baidubce.com/paddlepaddle/paddle:2.1.3-gpu-cuda11.2-cudnn8 +sudo nvidia-docker run --name ppocr -v $PWD:/paddle --shm-size=64G --network=host -it registry.baidubce.com/paddlepaddle/paddle:2.1.3-gpu-cuda10.2-cudnn7 /bin/bash # ctrl+P+Q可退出docker 容器,重新进入docker 容器使用如下命令 sudo docker container exec -it ppocr /bin/bash @@ -321,8 +329,3 @@ python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple ``` 更多的版本需求,请参照[飞桨官网安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作。 - - - - - diff --git a/doc/doc_en/environment_en.md b/doc/doc_en/environment_en.md index 96a46cce3010934689e8d95985ca434f49d18886..9aad92cafb809a0eec519808b1c1755403b39318 100644 --- a/doc/doc_en/environment_en.md +++ b/doc/doc_en/environment_en.md @@ -1,11 +1,18 @@ # Environment Preparation +Recommended working environment: +- PaddlePaddle >= 2.0.0 (2.1.2) +- python3.7 +- CUDA10.1 / CUDA10.2 +- CUDNN 7.6 + * [1. Python Environment Setup](#1) + [1.1 Windows](#1.1) + [1.2 Mac](#1.2) + [1.3 Linux](#1.3) * [2. Install PaddlePaddle 2.0](#2) + ## 1. Python Environment Setup @@ -38,7 +45,7 @@ - Check conda to add environment variables and ignore the warning that add conda to path - + #### 1.1.2 Opening the terminal and creating the conda environment @@ -69,7 +76,7 @@ # View the current location of python where python ``` - + create environment The above anaconda environment and python environment are installed @@ -133,13 +140,13 @@ The above anaconda environment and python environment are installed # !!! Contents within this block are managed by 'conda init' !!! __conda_setup="$('/Users/xxx/opt/anaconda3/bin/conda' 'shell.bash' 'hook' 2> /dev/null)" if [ $? -eq 0 ]; then - eval "$__conda_setup" + eval "$__conda_setup" else - if [ -f "/Users/xxx/opt/anaconda3/etc/profile.d/conda.sh" ]; then - . "/Users/xxx/opt/anaconda3/etc/profile.d/conda.sh" - else - export PATH="/Users/xxx/opt/anaconda3/bin:$PATH" - fi + if [ -f "/Users/xxx/opt/anaconda3/etc/profile.d/conda.sh" ]; then + . "/Users/xxx/opt/anaconda3/etc/profile.d/conda.sh" + else + export PATH="/Users/xxx/opt/anaconda3/bin:$PATH" + fi fi unset __conda_setup # <<< conda initialize <<< @@ -197,11 +204,10 @@ Linux users can choose to run either Anaconda or Docker. If you are familiar wit - **Download Anaconda**. - Download at: https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M&O=D - + - - Select the appropriate version for your operating system - Type `uname -m` in the terminal to check the command set used by your system @@ -216,12 +222,12 @@ Linux users can choose to run either Anaconda or Docker. If you are familiar wit sudo yum install wget # CentOS ``` ```bash - # Then use wget to download from Tsinghua source + # Then use wget to download from Tsinghua source # If you want to download Anaconda3-2021.05-Linux-x86_64.sh, the download command is as follows wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-2021.05-Linux-x86_64.sh # If you want to download another version, you need to change the file name after the last 1 / to the version you want to download ``` - + - To install Anaconda. - Type `sh Anaconda3-2021.05-Linux-x86_64.sh` at the command line @@ -309,7 +315,18 @@ cd /home/Projects # Create a docker container named ppocr and map the current directory to the /paddle directory of the container # If using CPU, use docker instead of nvidia-docker to create docker -sudo docker run --name ppocr -v $PWD:/paddle --network=host -it paddlepaddle/paddle:latest-dev-cuda10.1-cudnn7-gcc82 /bin/bash +sudo docker run --name ppocr -v $PWD:/paddle --network=host -it registry.baidubce.com/paddlepaddle/paddle:2.1.3-gpu-cuda10.2-cudnn7 /bin/bash + +# If using GPU, use nvidia-docker to create docker +# docker image registry.baidubce.com/paddlepaddle/paddle:2.1.3-gpu-cuda11.2-cudnn8 is recommended for CUDA11.2 + CUDNN8. +sudo nvidia-docker run --name ppocr -v $PWD:/paddle --shm-size=64G --network=host -it registry.baidubce.com/paddlepaddle/paddle:2.1.3-gpu-cuda10.2-cudnn7 /bin/bash + +``` +You can also visit [DockerHub](https://hub.docker.com/r/paddlepaddle/paddle/tags/) to get the image that fits your machine. + +``` +# ctrl+P+Q to exit docker, to re-enter docker using the following command: +sudo docker container exec -it ppocr /bin/bash ``` @@ -329,4 +346,3 @@ python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple ``` For more software version requirements, please refer to the instructions in [Installation Document](https://www.paddlepaddle.org.cn/install/quick) for operation. - diff --git a/doc/joinus.PNG b/doc/joinus.PNG index f7bac06594caebbd481547d3415a6fc03ba0b60a..974a4bd008d7b103de044cf8b4dbf37f09a0d06b 100644 Binary files a/doc/joinus.PNG and b/doc/joinus.PNG differ diff --git a/ppocr/losses/ace_loss.py b/ppocr/losses/ace_loss.py index 9c868520e5bd7b398c7f248c416b70427baee0a6..bf15f8e3a7b355bd9e8b69435a5dae01fc75a892 100644 --- a/ppocr/losses/ace_loss.py +++ b/ppocr/losses/ace_loss.py @@ -32,6 +32,7 @@ class ACELoss(nn.Layer): def __call__(self, predicts, batch): if isinstance(predicts, (list, tuple)): predicts = predicts[-1] + B, N = predicts.shape[:2] div = paddle.to_tensor([N]).astype('float32') @@ -42,9 +43,7 @@ class ACELoss(nn.Layer): length = batch[2].astype("float32") batch = batch[3].astype("float32") batch[:, 0] = paddle.subtract(div, length) - batch = paddle.divide(batch, div) loss = self.loss_func(aggregation_preds, batch) - return {"loss_ace": loss} diff --git a/ppocr/losses/center_loss.py b/ppocr/losses/center_loss.py index 72149df19f9e9a864ec31239177dc574648da3d5..cbef4df965e2659c6aa63c0c69cd8798143df485 100644 --- a/ppocr/losses/center_loss.py +++ b/ppocr/losses/center_loss.py @@ -27,7 +27,6 @@ class CenterLoss(nn.Layer): """ Reference: Wen et al. A Discriminative Feature Learning Approach for Deep Face Recognition. ECCV 2016. """ - def __init__(self, num_classes=6625, feat_dim=96, @@ -37,8 +36,7 @@ class CenterLoss(nn.Layer): self.num_classes = num_classes self.feat_dim = feat_dim self.centers = paddle.randn( - shape=[self.num_classes, self.feat_dim]).astype( - "float64") #random center + shape=[self.num_classes, self.feat_dim]).astype("float64") if init_center: assert os.path.exists( @@ -60,22 +58,23 @@ class CenterLoss(nn.Layer): batch_size = feats_reshape.shape[0] - #calc feat * feat - dist1 = paddle.sum(paddle.square(feats_reshape), axis=1, keepdim=True) - dist1 = paddle.expand(dist1, [batch_size, self.num_classes]) + #calc l2 distance between feats and centers + square_feat = paddle.sum(paddle.square(feats_reshape), + axis=1, + keepdim=True) + square_feat = paddle.expand(square_feat, [batch_size, self.num_classes]) - #dist2 of centers - dist2 = paddle.sum(paddle.square(self.centers), axis=1, - keepdim=True) #num_classes - dist2 = paddle.expand(dist2, - [self.num_classes, batch_size]).astype("float64") - dist2 = paddle.transpose(dist2, [1, 0]) + square_center = paddle.sum(paddle.square(self.centers), + axis=1, + keepdim=True) + square_center = paddle.expand( + square_center, [self.num_classes, batch_size]).astype("float64") + square_center = paddle.transpose(square_center, [1, 0]) - #first x * x + y * y - distmat = paddle.add(dist1, dist2) - tmp = paddle.matmul(feats_reshape, - paddle.transpose(self.centers, [1, 0])) - distmat = distmat - 2.0 * tmp + distmat = paddle.add(square_feat, square_center) + feat_dot_center = paddle.matmul(feats_reshape, + paddle.transpose(self.centers, [1, 0])) + distmat = distmat - 2.0 * feat_dot_center #generate the mask classes = paddle.arange(self.num_classes).astype("int64") @@ -83,7 +82,8 @@ class CenterLoss(nn.Layer): paddle.unsqueeze(label, 1), (batch_size, self.num_classes)) mask = paddle.equal( paddle.expand(classes, [batch_size, self.num_classes]), - label).astype("float64") #get mask + label).astype("float64") dist = paddle.multiply(distmat, mask) + loss = paddle.sum(paddle.clip(dist, min=1e-12, max=1e+12)) / batch_size return {'loss_center': loss} diff --git a/ppocr/losses/rec_sar_loss.py b/ppocr/losses/rec_sar_loss.py index 9e1c6495fb5ffa274662a3d1031b174d7297ee30..c8bd8bb0ca395fa4658e57b8dcac52a3e94aadce 100644 --- a/ppocr/losses/rec_sar_loss.py +++ b/ppocr/losses/rec_sar_loss.py @@ -9,11 +9,14 @@ from paddle import nn class SARLoss(nn.Layer): def __init__(self, **kwargs): super(SARLoss, self).__init__() - self.loss_func = paddle.nn.loss.CrossEntropyLoss(reduction="mean", ignore_index=96) + self.loss_func = paddle.nn.loss.CrossEntropyLoss( + reduction="mean", ignore_index=92) def forward(self, predicts, batch): - predict = predicts[:, :-1, :] # ignore last index of outputs to be in same seq_len with targets - label = batch[1].astype("int64")[:, 1:] # ignore first index of target in loss calculation + predict = predicts[:, : + -1, :] # ignore last index of outputs to be in same seq_len with targets + label = batch[1].astype( + "int64")[:, 1:] # ignore first index of target in loss calculation batch_size, num_steps, num_classes = predict.shape[0], predict.shape[ 1], predict.shape[2] assert len(label.shape) == len(list(predict.shape)) - 1, \ diff --git a/ppocr/modeling/backbones/rec_mv1_enhance.py b/ppocr/modeling/backbones/rec_mv1_enhance.py index fe874fac1af439bfb47ba9050a61f02db302e224..04a909b8ccafd8e62f9a7076c7dedf63ff745303 100644 --- a/ppocr/modeling/backbones/rec_mv1_enhance.py +++ b/ppocr/modeling/backbones/rec_mv1_enhance.py @@ -1,4 +1,4 @@ -# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. +# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -16,26 +16,17 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -import numpy as np -import paddle -from paddle import ParamAttr -import paddle.nn as nn -import paddle.nn.functional as F -from paddle.nn import Conv2D, BatchNorm, Linear, Dropout -from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D -from paddle.nn.initializer import KaimingNormal import math import numpy as np import paddle -from paddle import ParamAttr, reshape, transpose, concat, split +from paddle import ParamAttr, reshape, transpose import paddle.nn as nn import paddle.nn.functional as F from paddle.nn import Conv2D, BatchNorm, Linear, Dropout from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D from paddle.nn.initializer import KaimingNormal -import math -from paddle.nn.functional import hardswish, hardsigmoid from paddle.regularizer import L2Decay +from paddle.nn.functional import hardswish, hardsigmoid class ConvBNLayer(nn.Layer): diff --git a/ppocr/modeling/necks/rnn.py b/ppocr/modeling/necks/rnn.py index de87b3d9895168657f8c9722177c026b992c2966..86e649028f8fbb76cb5a1fd85381bd361277c6ee 100644 --- a/ppocr/modeling/necks/rnn.py +++ b/ppocr/modeling/necks/rnn.py @@ -51,7 +51,7 @@ class EncoderWithFC(nn.Layer): super(EncoderWithFC, self).__init__() self.out_channels = hidden_size weight_attr, bias_attr = get_para_bias_attr( - l2_decay=0.00001, k=in_channels, name='reduce_encoder_fea') + l2_decay=0.00001, k=in_channels) self.fc = nn.Linear( in_channels, hidden_size, diff --git a/ppocr/utils/dict90.txt b/ppocr/utils/dict90.txt new file mode 100644 index 0000000000000000000000000000000000000000..a945ae9c526e4faa68852eb3fb47d078a2f3f6ce --- /dev/null +++ b/ppocr/utils/dict90.txt @@ -0,0 +1,90 @@ +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +a +b +c +d +e +f +g +h +i +j +k +l +m +n +o +p +q +r +s +t +u +v +w +x +y +z +A +B +C +D +E +F +G +H +I +J +K +L +M +N +O +P +Q +R +S +T +U +V +W +X +Y +Z +! +" +# +$ +% +& +' +( +) +* ++ +, +- +. +/ +: +; +< += +> +? +@ +[ +\ +] +_ +` +~ \ No newline at end of file diff --git a/tests/docs/compare_right.png b/tests/docs/compare_right.png new file mode 100644 index 0000000000000000000000000000000000000000..3d74ef1cd5c5506b759886b5cfa541acac50f493 Binary files /dev/null and b/tests/docs/compare_right.png differ diff --git a/tests/docs/compare_wrong.png b/tests/docs/compare_wrong.png new file mode 100644 index 0000000000000000000000000000000000000000..26ad576d2f341072be81b99af154a2499d1ba05f Binary files /dev/null and b/tests/docs/compare_wrong.png differ diff --git a/tests/docs/guide.png b/tests/docs/guide.png new file mode 100644 index 0000000000000000000000000000000000000000..319ac819daff38ed77e84cdff2b122e8bc4a8e5f Binary files /dev/null and b/tests/docs/guide.png differ diff --git a/tests/docs/test.png b/tests/docs/test.png new file mode 100644 index 0000000000000000000000000000000000000000..a27c16ec75fbfb437240b9e05510b6fe74a5766b Binary files /dev/null and b/tests/docs/test.png differ diff --git a/tests/docs/test_cpp.md b/tests/docs/test_cpp.md new file mode 100644 index 0000000000000000000000000000000000000000..d44ebf629a9e87a5e98e86e55d8bb6aee1489086 --- /dev/null +++ b/tests/docs/test_cpp.md @@ -0,0 +1,56 @@ +# C++预测功能测试 + +C++预测功能测试的主程序为`test_cpp.sh`,可以测试基于C++预测库的模型推理功能。 + +## 测试结论汇总 + +| 算法名称 | 模型名称 |device | batchsize | mkldnn | cpu多线程 | tensorrt | 离线量化 | +| ---- | ---- | ---- | ---- | ---- | ---- | ----| --- | +| DB |ch_ppocr_mobile_v2.0_det| CPU/GPU | 1/6 | 支持 | 支持 | fp32/fp16/int8 | 支持 | +| DB |ch_ppocr_server_v2.0_det| CPU/GPU | 1/6 | 支持 | 支持 | fp32/fp16/int8 | 支持 | +| CRNN |ch_ppocr_mobile_v2.0_rec| CPU/GPU | 1/6 | 支持 | 支持 | fp32/fp16/int8 | 支持 | +| CRNN |ch_ppocr_server_v2.0_rec| CPU/GPU | 1/6 | 支持 | 支持 | fp32/fp16/int8 | 支持 | +|PP-OCR|ch_ppocr_server_v2.0 | CPU/GPU | 1/6 | 支持 | 支持 | fp32/fp16/int8 | 支持 | +|PP-OCR|ch_ppocr_server_v2.0 | CPU/GPU | 1/6 | 支持 | 支持 | fp32/fp16/int8 | 支持 | + + + +## 1. 功能测试 +先运行`prepare.sh`准备数据和模型,然后运行`test_cpp.sh`进行测试,最终在```tests/output```目录下生成`cpp_infer_*.log`后缀的日志文件。 + +```shell +bash tests/prepare.sh ./tests/configs/ppocr_det_mobile_params.txt + +# 用法1: +bash tests/test_cpp.sh ./tests/configs/ppocr_det_mobile_params.txt +# 用法2: 指定GPU卡预测,第三个传入参数为GPU卡号 +bash tests/test_cpp.sh ./tests/configs/ppocr_det_mobile_params.txt '1' +``` + + +## 2. 精度测试 + +使用compare_results.py脚本比较模型预测的结果是否符合预期,主要步骤包括: +- 提取日志中的预测坐标; +- 从本地文件中提取保存好的坐标结果; +- 比较上述两个结果是否符合精度预期,误差大于设置阈值时会报错。 + +### 使用方式 +运行命令: +```shell +python3.7 tests/compare_results.py --gt_file=./tests/results/cpp_*.txt --log_file=./tests/output/cpp_*.log --atol=1e-3 --rtol=1e-3 +``` + +参数介绍: +- gt_file: 指向事先保存好的预测结果路径,支持*.txt 结尾,会自动索引*.txt格式的文件,文件默认保存在tests/result/ 文件夹下 +- log_file: 指向运行tests/test.sh 脚本的infer模式保存的预测日志,预测日志中打印的有预测结果,比如:文本框,预测文本,类别等等,同样支持infer_*.log格式传入 +- atol: 设置的绝对误差 +- rtol: 设置的相对误差 + +### 运行结果 + +正常运行效果如下图: + + +出现不一致结果时的运行输出: + diff --git a/tests/docs/test_python.md b/tests/docs/test_python.md new file mode 100644 index 0000000000000000000000000000000000000000..eddaac78eaf7a40953f909dc398f77d62406f56c --- /dev/null +++ b/tests/docs/test_python.md @@ -0,0 +1,112 @@ +# Python功能测试 + +Python功能测试的主程序为`test_python.sh`,可以测试基于Python的模型训练、评估、推理等基本功能,包括裁剪、量化、蒸馏。 + +## 测试结论汇总 + +- 训练相关: + +| 算法名称 | 模型名称 | 单机单卡 | 单机多卡 | 多机多卡 | 模型压缩(单机多卡) | +| :---- | :---- | :---- | :---- | :---- | :---- | +| DB | ch_ppocr_mobile_v2.0_det| 正常训练
混合精度 | 正常训练
混合精度 | 正常训练
混合精度 | 正常训练:FPGM裁剪、PACT量化 | +| DB | ch_ppocr_server_v2.0_det| 正常训练
混合精度 | 正常训练
混合精度 | 正常训练
混合精度 | 正常训练:FPGM裁剪、PACT量化 | +| CRNN | ch_ppocr_mobile_v2.0_rec| 正常训练
混合精度 | 正常训练
混合精度 | 正常训练
混合精度 | 正常训练:FPGM裁剪、PACT量化 | +| CRNN | ch_ppocr_server_v2.0_rec| 正常训练
混合精度 | 正常训练
混合精度 | 正常训练
混合精度 | 正常训练:FPGM裁剪、PACT量化 | +|PP-OCR| ch_ppocr_mobile_v2.0| 正常训练
混合精度 | 正常训练
混合精度 | 正常训练
混合精度 | 正常训练:FPGM裁剪、PACT量化 | +|PP-OCR| ch_ppocr_server_v2.0| 正常训练
混合精度 | 正常训练
混合精度 | 正常训练
混合精度 | 正常训练:FPGM裁剪、PACT量化 | + + +- 预测相关: + +| 算法名称 | 模型名称 |device | batchsize | mkldnn | cpu多线程 | tensorrt | 离线量化 | +| ---- | ---- | ---- | ---- | ---- | ---- | ----| --- | +| DB |ch_ppocr_mobile_v2.0_det| CPU/GPU | 1/6 | 支持 | 支持 | fp32/fp16/int8 | 支持 | +| DB |ch_ppocr_server_v2.0_det| CPU/GPU | 1/6 | 支持 | 支持 | fp32/fp16/int8 | 支持 | +| CRNN |ch_ppocr_mobile_v2.0_rec| CPU/GPU | 1/6 | 支持 | 支持 | fp32/fp16/int8 | 支持 | +| CRNN |ch_ppocr_server_v2.0_rec| CPU/GPU | 1/6 | 支持 | 支持 | fp32/fp16/int8 | 支持 | +|PP-OCR|ch_ppocr_server_v2.0 | CPU/GPU | 1/6 | 支持 | 支持 | fp32/fp16/int8 | 支持 | +|PP-OCR|ch_ppocr_server_v2.0 | CPU/GPU | 1/6 | 支持 | 支持 | fp32/fp16/int8 | 支持 | + + + +## 1. 安装依赖 +- 安装PaddlePaddle >= 2.0 +- 安装PaddleOCR依赖 + ``` + pip3 install -r ../requirements.txt + ``` +- 安装autolog(规范化日志输出工具) + ``` + git clone https://github.com/LDOUBLEV/AutoLog + cd AutoLog + pip3 install -r requirements.txt + python3 setup.py bdist_wheel + pip3 install ./dist/auto_log-1.0.0-py3-none-any.whl + cd ../ + ``` + + +## 2. 功能测试 +先运行`prepare.sh`准备数据和模型,然后运行`test_python.sh`进行测试,最终在```tests/output```目录下生成`infer_*.log`格式的日志文件。 + +test_python.sh包含四种运行模式,每种模式的运行数据不同,分别用于测试速度和精度,分别是: + +- 模式1:lite_train_infer,使用少量数据训练,用于快速验证训练到预测的走通流程,不验证精度和速度; +```shell +bash tests/prepare.sh ./tests/configs/ppocr_det_mobile_params.txt 'lite_train_infer' +bash tests/test_python.sh ./tests/configs/ppocr_det_mobile_params.txt 'lite_train_infer' +``` + +- 模式2:whole_infer,使用少量数据训练,一定量数据预测,用于验证训练后的模型执行预测,预测速度是否合理; +```shell +bash tests/prepare.sh ./tests/configs/ppocr_det_mobile_params.txt 'whole_infer' +bash tests/test_python.sh ./tests/configs/ppocr_det_mobile_params.txt 'whole_infer' +``` + +- 模式3:infer 不训练,全量数据预测,走通开源模型评估、动转静,检查inference model预测时间和精度; +```shell +bash tests/prepare.sh ./tests/configs/ppocr_det_mobile_params.txt 'infer' +# 用法1: +bash tests/test_python.sh ./tests/configs/ppocr_det_mobile_params.txt 'infer' +# 用法2: 指定GPU卡预测,第三个传入参数为GPU卡号 +bash tests/test_python.sh ./tests/configs/ppocr_det_mobile_params.txt 'infer' '1' +``` + +- 模式4:whole_train_infer , CE: 全量数据训练,全量数据预测,验证模型训练精度,预测精度,预测速度; +```shell +bash tests/prepare.sh ./tests/configs/ppocr_det_mobile_params.txt 'whole_train_infer' +bash tests/test.sh ./tests/configs/ppocr_det_mobile_params.txt 'whole_train_infer' +``` + +- 模式5:klquant_infer , 测试离线量化; +```shell +bash tests/test_python.sh tests/configs/ppocr_det_mobile_params.txt 'klquant_infer' +``` + + +## 3. 精度测试 + +使用compare_results.py脚本比较模型预测的结果是否符合预期,主要步骤包括: +- 提取日志中的预测坐标; +- 从本地文件中提取保存好的坐标结果; +- 比较上述两个结果是否符合精度预期,误差大于设置阈值时会报错。 + +### 使用方式 +运行命令: +```shell +python3.7 tests/compare_results.py --gt_file=./tests/results/python_*.txt --log_file=./tests/output/python_*.log --atol=1e-3 --rtol=1e-3 +``` + +参数介绍: +- gt_file: 指向事先保存好的预测结果路径,支持*.txt 结尾,会自动索引*.txt格式的文件,文件默认保存在tests/result/ 文件夹下 +- log_file: 指向运行tests/test.sh 脚本的infer模式保存的预测日志,预测日志中打印的有预测结果,比如:文本框,预测文本,类别等等,同样支持infer_*.log格式传入 +- atol: 设置的绝对误差 +- rtol: 设置的相对误差 + +### 运行结果 + +正常运行效果如下图: + + +出现不一致结果时的运行输出: + diff --git a/tests/readme.md b/tests/readme.md index 127eef9fe34de37f5dfa608b3ed9903f2b826fa0..b7138a6801c3a589f5ca2ed0e8a6bafb08db3fec 100644 --- a/tests/readme.md +++ b/tests/readme.md @@ -1,72 +1,93 @@ -# 从训练到推理部署工具链测试方法介绍 +# 推理部署导航 -test.sh和params.txt文件配合使用,完成OCR轻量检测和识别模型从训练到预测的流程测试。 +飞桨除了基本的模型训练和预测,还提供了支持多端多平台的高性能推理部署工具。本文档提供了PaddleOCR中所有模型的推理部署导航,方便用户查阅每种模型的推理部署打通情况,并可以进行一键测试。 -# 安装依赖 -- 安装PaddlePaddle >= 2.0 -- 安装PaddleOCR依赖 - ``` - pip3 install -r ../requirements.txt - ``` -- 安装autolog - ``` - git clone https://github.com/LDOUBLEV/AutoLog - cd AutoLog - pip3 install -r requirements.txt - python3 setup.py bdist_wheel - pip3 install ./dist/auto_log-1.0.0-py3-none-any.whl - cd ../ - ``` +
+ +
-# 目录介绍 +打通情况汇总如下,已填写的部分表示可以使用本工具进行一键测试,未填写的表示正在支持中。 -```bash -tests/ -├── ocr_det_params.txt # 测试OCR检测模型的参数配置文件 -├── ocr_rec_params.txt # 测试OCR识别模型的参数配置文件 -├── ocr_ppocr_mobile_params.txt # 测试OCR检测+识别模型串联的参数配置文件 -└── prepare.sh # 完成test.sh运行所需要的数据和模型下载 -└── test.sh # 测试主程序 -``` +| 算法论文 | 模型名称 | 模型类型 | python训练预测 | 其他 | +| :--- | :--- | :---- | :-------- | :---- | +| DB |ch_ppocr_mobile_v2.0_det | 检测 | 支持 | Paddle Inference: C++预测
Paddle Serving: Python, C++
Paddle-Lite: Python, C++ / ARM CPU | +| DB |ch_ppocr_server_v2.0_det | 检测 | 支持 | Paddle Inference: C++预测
Paddle Serving: Python, C++
Paddle-Lite: Python, C++ / ARM CPU | +| DB |ch_PP-OCRv2_det | 检测 | +| CRNN |ch_ppocr_mobile_v2.0_rec | 识别 | 支持 | Paddle Inference: C++预测
Paddle Serving: Python, C++
Paddle-Lite: Python, C++ / ARM CPU | +| CRNN |ch_ppocr_server_v2.0_rec | 识别 | 支持 | Paddle Inference: C++预测
Paddle Serving: Python, C++
Paddle-Lite: Python, C++ / ARM CPU | +| CRNN |ch_PP-OCRv2_rec | 识别 | +| DB |det_mv3_db_v2.0 | 检测 | +| DB |det_r50_vd_db_v2.0 | 检测 | +| EAST |det_mv3_east_v2.0 | 检测 | +| EAST |det_r50_vd_east_v2.0 | 检测 | +| PSENet |det_mv3_pse_v2.0 | 检测 | +| PSENet |det_r50_vd_pse_v2.0 | 检测 | +| SAST |det_r50_vd_sast_totaltext_v2.0 | 检测 | +| Rosetta|rec_mv3_none_none_ctc_v2.0 | 识别 | +| Rosetta|rec_r34_vd_none_none_ctc_v2.0 | 识别 | +| CRNN |rec_mv3_none_bilstm_ctc_v2.0 | 识别 | +| CRNN |rec_r34_vd_none_bilstm_ctc_v2.0| 识别 | +| StarNet|rec_mv3_tps_bilstm_ctc_v2.0 | 识别 | +| StarNet|rec_r34_vd_tps_bilstm_ctc_v2.0 | 识别 | +| RARE |rec_mv3_tps_bilstm_att_v2.0 | 识别 | +| RARE |rec_r34_vd_tps_bilstm_att_v2.0 | 识别 | +| SRN |rec_r50fpn_vd_none_srn | 识别 | +| NRTR |rec_mtb_nrtr | 识别 | +| SAR |rec_r31_sar | 识别 | +| PGNet |rec_r34_vd_none_none_ctc_v2.0 | 端到端| -# 使用方法 -test.sh包含四种运行模式,每种模式的运行数据不同,分别用于测试速度和精度,分别是: -- 模式1:lite_train_infer,使用少量数据训练,用于快速验证训练到预测的走通流程,不验证精度和速度; -```shell -bash tests/prepare.sh ./tests/ocr_det_params.txt 'lite_train_infer' -bash tests/test.sh ./tests/ocr_det_params.txt 'lite_train_infer' -``` - -- 模式2:whole_infer,使用少量数据训练,一定量数据预测,用于验证训练后的模型执行预测,预测速度是否合理; -```shell -bash tests/prepare.sh ./tests/ocr_det_params.txt 'whole_infer' -bash tests/test.sh ./tests/ocr_det_params.txt 'whole_infer' -``` +## 一键测试工具使用 +### 目录介绍 -- 模式3:infer 不训练,全量数据预测,走通开源模型评估、动转静,检查inference model预测时间和精度; ```shell -bash tests/prepare.sh ./tests/ocr_det_params.txt 'infer' -# 用法1: -bash tests/test.sh ./tests/ocr_det_params.txt 'infer' -# 用法2: 指定GPU卡预测,第三个传入参数为GPU卡号 -bash tests/test.sh ./tests/ocr_det_params.txt 'infer' '1' -``` +tests/ +├── configs/ # 配置文件目录 + ├── det_mv3_db.yml # 测试mobile版ppocr检测模型训练的yml文件 + ├── det_r50_vd_db.yml # 测试server版ppocr检测模型训练的yml文件 + ├── rec_icdar15_r34_train.yml # 测试server版ppocr识别模型训练的yml文件 + ├── ppocr_sys_mobile_params.txt # 测试mobile版ppocr检测+识别模型串联的参数配置文件 + ├── ppocr_det_mobile_params.txt # 测试mobile版ppocr检测模型的参数配置文件 + ├── ppocr_rec_mobile_params.txt # 测试mobile版ppocr识别模型的参数配置文件 + ├── ppocr_sys_server_params.txt # 测试server版ppocr检测+识别模型串联的参数配置文件 + ├── ppocr_det_server_params.txt # 测试server版ppocr检测模型的参数配置文件 + ├── ppocr_rec_server_params.txt # 测试server版ppocr识别模型的参数配置文件 + ├── ... +├── results/ # 预先保存的预测结果,用于和实际预测结果进行精读比对 + ├── ppocr_det_mobile_results_fp32.txt # 预存的mobile版ppocr检测模型fp32精度的结果 + ├── ppocr_det_mobile_results_fp16.txt # 预存的mobile版ppocr检测模型fp16精度的结果 + ├── ppocr_det_mobile_results_fp32_cpp.txt # 预存的mobile版ppocr检测模型c++预测的fp32精度的结果 + ├── ppocr_det_mobile_results_fp16_cpp.txt # 预存的mobile版ppocr检测模型c++预测的fp16精度的结果 + ├── ... +├── prepare.sh # 完成test_*.sh运行所需要的数据和模型下载 +├── test_python.sh # 测试python训练预测的主程序 +├── test_cpp.sh # 测试c++预测的主程序 +├── test_serving.sh # 测试serving部署预测的主程序 +├── test_lite.sh # 测试lite部署预测的主程序 +├── compare_results.py # 用于对比log中的预测结果与results中的预存结果精度误差是否在限定范围内 +└── readme.md # 使用文档 +``` -- 模式4:whole_train_infer , CE: 全量数据训练,全量数据预测,验证模型训练精度,预测精度,预测速度; -```shell -bash tests/prepare.sh ./tests/ocr_det_params.txt 'whole_train_infer' -bash tests/test.sh ./tests/ocr_det_params.txt 'whole_train_infer' -``` +### 测试流程 +使用本工具,可以测试不同功能的支持情况,以及预测结果是否对齐,测试流程如下: +
+ +
-- 模式5:cpp_infer , CE: 验证inference model的c++预测是否走通; -```shell -bash tests/prepare.sh ./tests/ocr_det_params.txt 'cpp_infer' -bash tests/test.sh ./tests/ocr_det_params.txt 'cpp_infer' -``` +1. 运行prepare.sh准备测试所需数据和模型; +2. 运行要测试的功能对应的测试脚本`test_*.sh`,产出log,由log可以看到不同配置是否运行成功; +3. 用`compare_results.py`对比log中的预测结果和预存在results目录下的结果,判断预测精度是否符合预期(在误差范围内)。 -# 日志输出 -最终在```tests/output```目录下生成.log后缀的日志文件 +其中,有4个测试主程序,功能如下: +- `test_python.sh`:测试基于Python的模型训练、评估、推理等基本功能,包括裁剪、量化、蒸馏。 +- `test_cpp.sh`:测试基于C++的模型推理。 +- `test_serving.sh`:测试基于Paddle Serving的服务化部署功能。 +- `test_lite.sh`:测试基于Paddle-Lite的端侧预测部署功能。 +各功能测试中涉及GPU/CPU、mkldnn、Tensorrt等多种参数配置,点击相应链接了解更多细节和使用教程: +[test_python使用](docs/test_python.md) +[test_cpp使用](docs/test_cpp.md) +[test_serving使用](docs/test_serving.md) +[test_lite使用](docs/test_lite.md) diff --git a/tests/results/ppocr_det_mobile_results_fp16_cpp.txt b/tests/results/cpp_ppocr_det_mobile_results_fp16.txt similarity index 100% rename from tests/results/ppocr_det_mobile_results_fp16_cpp.txt rename to tests/results/cpp_ppocr_det_mobile_results_fp16.txt diff --git a/tests/results/ppocr_det_mobile_results_fp32_cpp.txt b/tests/results/cpp_ppocr_det_mobile_results_fp32.txt similarity index 100% rename from tests/results/ppocr_det_mobile_results_fp32_cpp.txt rename to tests/results/cpp_ppocr_det_mobile_results_fp32.txt diff --git a/tests/results/ppocr_det_mobile_results_fp16.txt b/tests/results/python_ppocr_det_mobile_results_fp16.txt similarity index 100% rename from tests/results/ppocr_det_mobile_results_fp16.txt rename to tests/results/python_ppocr_det_mobile_results_fp16.txt diff --git a/tests/results/ppocr_det_mobile_results_fp32.txt b/tests/results/python_ppocr_det_mobile_results_fp32.txt similarity index 100% rename from tests/results/ppocr_det_mobile_results_fp32.txt rename to tests/results/python_ppocr_det_mobile_results_fp32.txt diff --git a/tests/test.sh b/tests/test.sh deleted file mode 100644 index 3df0d52cc5cfa6fd8d7259d47178d8c26d2952fb..0000000000000000000000000000000000000000 --- a/tests/test.sh +++ /dev/null @@ -1,634 +0,0 @@ -#!/bin/bash -FILENAME=$1 -# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer', 'cpp_infer', 'serving_infer', 'klquant_infer'] -MODE=$2 -if [ ${MODE} = "cpp_infer" ]; then - dataline=$(awk 'NR==67, NR==81{print}' $FILENAME) -elif [ ${MODE} = "serving_infer" ]; then - dataline=$(awk 'NR==52, NR==66{print}' $FILENAME) -elif [ ${MODE} = "klquant_infer" ]; then - dataline=$(awk 'NR==82, NR==98{print}' $FILENAME) -else - dataline=$(awk 'NR==1, NR==51{print}' $FILENAME) -fi - -# parser params -IFS=$'\n' -lines=(${dataline}) - -function func_parser_key(){ - strs=$1 - IFS=":" - array=(${strs}) - tmp=${array[0]} - echo ${tmp} -} -function func_parser_value(){ - strs=$1 - IFS=":" - array=(${strs}) - tmp=${array[1]} - echo ${tmp} -} -function func_set_params(){ - key=$1 - value=$2 - if [ ${key} = "null" ];then - echo " " - elif [[ ${value} = "null" ]] || [[ ${value} = " " ]] || [ ${#value} -le 0 ];then - echo " " - else - echo "${key}=${value}" - fi -} -function func_parser_params(){ - strs=$1 - IFS=":" - array=(${strs}) - key=${array[0]} - tmp=${array[1]} - IFS="|" - res="" - for _params in ${tmp[*]}; do - IFS="=" - array=(${_params}) - mode=${array[0]} - value=${array[1]} - if [[ ${mode} = ${MODE} ]]; then - IFS="|" - #echo $(func_set_params "${mode}" "${value}") - echo $value - break - fi - IFS="|" - done - echo ${res} -} -function status_check(){ - last_status=$1 # the exit code - run_command=$2 - run_log=$3 - if [ $last_status -eq 0 ]; then - echo -e "\033[33m Run successfully with command - ${run_command}! \033[0m" | tee -a ${run_log} - else - echo -e "\033[33m Run failed with command - ${run_command}! \033[0m" | tee -a ${run_log} - fi -} - -IFS=$'\n' -# The training params -model_name=$(func_parser_value "${lines[1]}") -python=$(func_parser_value "${lines[2]}") -gpu_list=$(func_parser_value "${lines[3]}") -train_use_gpu_key=$(func_parser_key "${lines[4]}") -train_use_gpu_value=$(func_parser_value "${lines[4]}") -autocast_list=$(func_parser_value "${lines[5]}") -autocast_key=$(func_parser_key "${lines[5]}") -epoch_key=$(func_parser_key "${lines[6]}") -epoch_num=$(func_parser_params "${lines[6]}") -save_model_key=$(func_parser_key "${lines[7]}") -train_batch_key=$(func_parser_key "${lines[8]}") -train_batch_value=$(func_parser_params "${lines[8]}") -pretrain_model_key=$(func_parser_key "${lines[9]}") -pretrain_model_value=$(func_parser_value "${lines[9]}") -train_model_name=$(func_parser_value "${lines[10]}") -train_infer_img_dir=$(func_parser_value "${lines[11]}") -train_param_key1=$(func_parser_key "${lines[12]}") -train_param_value1=$(func_parser_value "${lines[12]}") - -trainer_list=$(func_parser_value "${lines[14]}") -trainer_norm=$(func_parser_key "${lines[15]}") -norm_trainer=$(func_parser_value "${lines[15]}") -pact_key=$(func_parser_key "${lines[16]}") -pact_trainer=$(func_parser_value "${lines[16]}") -fpgm_key=$(func_parser_key "${lines[17]}") -fpgm_trainer=$(func_parser_value "${lines[17]}") -distill_key=$(func_parser_key "${lines[18]}") -distill_trainer=$(func_parser_value "${lines[18]}") -trainer_key1=$(func_parser_key "${lines[19]}") -trainer_value1=$(func_parser_value "${lines[19]}") -trainer_key2=$(func_parser_key "${lines[20]}") -trainer_value2=$(func_parser_value "${lines[20]}") - -eval_py=$(func_parser_value "${lines[23]}") -eval_key1=$(func_parser_key "${lines[24]}") -eval_value1=$(func_parser_value "${lines[24]}") - -save_infer_key=$(func_parser_key "${lines[27]}") -export_weight=$(func_parser_key "${lines[28]}") -norm_export=$(func_parser_value "${lines[29]}") -pact_export=$(func_parser_value "${lines[30]}") -fpgm_export=$(func_parser_value "${lines[31]}") -distill_export=$(func_parser_value "${lines[32]}") -export_key1=$(func_parser_key "${lines[33]}") -export_value1=$(func_parser_value "${lines[33]}") -export_key2=$(func_parser_key "${lines[34]}") -export_value2=$(func_parser_value "${lines[34]}") - -# parser inference model -infer_model_dir_list=$(func_parser_value "${lines[36]}") -infer_export_list=$(func_parser_value "${lines[37]}") -infer_is_quant=$(func_parser_value "${lines[38]}") -# parser inference -inference_py=$(func_parser_value "${lines[39]}") -use_gpu_key=$(func_parser_key "${lines[40]}") -use_gpu_list=$(func_parser_value "${lines[40]}") -use_mkldnn_key=$(func_parser_key "${lines[41]}") -use_mkldnn_list=$(func_parser_value "${lines[41]}") -cpu_threads_key=$(func_parser_key "${lines[42]}") -cpu_threads_list=$(func_parser_value "${lines[42]}") -batch_size_key=$(func_parser_key "${lines[43]}") -batch_size_list=$(func_parser_value "${lines[43]}") -use_trt_key=$(func_parser_key "${lines[44]}") -use_trt_list=$(func_parser_value "${lines[44]}") -precision_key=$(func_parser_key "${lines[45]}") -precision_list=$(func_parser_value "${lines[45]}") -infer_model_key=$(func_parser_key "${lines[46]}") -image_dir_key=$(func_parser_key "${lines[47]}") -infer_img_dir=$(func_parser_value "${lines[47]}") -save_log_key=$(func_parser_key "${lines[48]}") -benchmark_key=$(func_parser_key "${lines[49]}") -benchmark_value=$(func_parser_value "${lines[49]}") -infer_key1=$(func_parser_key "${lines[50]}") -infer_value1=$(func_parser_value "${lines[50]}") - -# parser serving -if [ ${MODE} = "klquant_infer" ]; then - # parser inference model - infer_model_dir_list=$(func_parser_value "${lines[1]}") - infer_export_list=$(func_parser_value "${lines[2]}") - infer_is_quant=$(func_parser_value "${lines[3]}") - # parser inference - inference_py=$(func_parser_value "${lines[4]}") - use_gpu_key=$(func_parser_key "${lines[5]}") - use_gpu_list=$(func_parser_value "${lines[5]}") - use_mkldnn_key=$(func_parser_key "${lines[6]}") - use_mkldnn_list=$(func_parser_value "${lines[6]}") - cpu_threads_key=$(func_parser_key "${lines[7]}") - cpu_threads_list=$(func_parser_value "${lines[7]}") - batch_size_key=$(func_parser_key "${lines[8]}") - batch_size_list=$(func_parser_value "${lines[8]}") - use_trt_key=$(func_parser_key "${lines[9]}") - use_trt_list=$(func_parser_value "${lines[9]}") - precision_key=$(func_parser_key "${lines[10]}") - precision_list=$(func_parser_value "${lines[10]}") - infer_model_key=$(func_parser_key "${lines[11]}") - image_dir_key=$(func_parser_key "${lines[12]}") - infer_img_dir=$(func_parser_value "${lines[12]}") - save_log_key=$(func_parser_key "${lines[13]}") - benchmark_key=$(func_parser_key "${lines[14]}") - benchmark_value=$(func_parser_value "${lines[14]}") - infer_key1=$(func_parser_key "${lines[15]}") - infer_value1=$(func_parser_value "${lines[15]}") -fi -# parser serving -if [ ${MODE} = "server_infer" ]; then - trans_model_py=$(func_parser_value "${lines[1]}") - infer_model_dir_key=$(func_parser_key "${lines[2]}") - infer_model_dir_value=$(func_parser_value "${lines[2]}") - model_filename_key=$(func_parser_key "${lines[3]}") - model_filename_value=$(func_parser_value "${lines[3]}") - params_filename_key=$(func_parser_key "${lines[4]}") - params_filename_value=$(func_parser_value "${lines[4]}") - serving_server_key=$(func_parser_key "${lines[5]}") - serving_server_value=$(func_parser_value "${lines[5]}") - serving_client_key=$(func_parser_key "${lines[6]}") - serving_client_value=$(func_parser_value "${lines[6]}") - serving_dir_value=$(func_parser_value "${lines[7]}") - web_service_py=$(func_parser_value "${lines[8]}") - web_use_gpu_key=$(func_parser_key "${lines[9]}") - web_use_gpu_list=$(func_parser_value "${lines[9]}") - web_use_mkldnn_key=$(func_parser_key "${lines[10]}") - web_use_mkldnn_list=$(func_parser_value "${lines[10]}") - web_cpu_threads_key=$(func_parser_key "${lines[11]}") - web_cpu_threads_list=$(func_parser_value "${lines[11]}") - web_use_trt_key=$(func_parser_key "${lines[12]}") - web_use_trt_list=$(func_parser_value "${lines[12]}") - web_precision_key=$(func_parser_key "${lines[13]}") - web_precision_list=$(func_parser_value "${lines[13]}") - pipeline_py=$(func_parser_value "${lines[14]}") -fi - -if [ ${MODE} = "cpp_infer" ]; then - # parser cpp inference model - cpp_infer_model_dir_list=$(func_parser_value "${lines[1]}") - cpp_infer_is_quant=$(func_parser_value "${lines[2]}") - # parser cpp inference - inference_cmd=$(func_parser_value "${lines[3]}") - cpp_use_gpu_key=$(func_parser_key "${lines[4]}") - cpp_use_gpu_list=$(func_parser_value "${lines[4]}") - cpp_use_mkldnn_key=$(func_parser_key "${lines[5]}") - cpp_use_mkldnn_list=$(func_parser_value "${lines[5]}") - cpp_cpu_threads_key=$(func_parser_key "${lines[6]}") - cpp_cpu_threads_list=$(func_parser_value "${lines[6]}") - cpp_batch_size_key=$(func_parser_key "${lines[7]}") - cpp_batch_size_list=$(func_parser_value "${lines[7]}") - cpp_use_trt_key=$(func_parser_key "${lines[8]}") - cpp_use_trt_list=$(func_parser_value "${lines[8]}") - cpp_precision_key=$(func_parser_key "${lines[9]}") - cpp_precision_list=$(func_parser_value "${lines[9]}") - cpp_infer_model_key=$(func_parser_key "${lines[10]}") - cpp_image_dir_key=$(func_parser_key "${lines[11]}") - cpp_infer_img_dir=$(func_parser_value "${lines[12]}") - cpp_infer_key1=$(func_parser_key "${lines[13]}") - cpp_infer_value1=$(func_parser_value "${lines[13]}") - cpp_benchmark_key=$(func_parser_key "${lines[14]}") - cpp_benchmark_value=$(func_parser_value "${lines[14]}") -fi - - - -LOG_PATH="./tests/output" -mkdir -p ${LOG_PATH} -status_log="${LOG_PATH}/results.log" - - -function func_inference(){ - IFS='|' - _python=$1 - _script=$2 - _model_dir=$3 - _log_path=$4 - _img_dir=$5 - _flag_quant=$6 - # inference - for use_gpu in ${use_gpu_list[*]}; do - if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then - for use_mkldnn in ${use_mkldnn_list[*]}; do - if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then - continue - fi - for threads in ${cpu_threads_list[*]}; do - for batch_size in ${batch_size_list[*]}; do - _save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log" - set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}") - set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}") - set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}") - set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}") - set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}") - set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}") - command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 " - eval $command - last_status=${PIPESTATUS[0]} - eval "cat ${_save_log_path}" - status_check $last_status "${command}" "${status_log}" - done - done - done - elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then - for use_trt in ${use_trt_list[*]}; do - for precision in ${precision_list[*]}; do - if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then - continue - fi - if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then - continue - fi - if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then - continue - fi - for batch_size in ${batch_size_list[*]}; do - _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log" - set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}") - set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}") - set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}") - set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}") - set_precision=$(func_set_params "${precision_key}" "${precision}") - set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}") - set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}") - command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 " - eval $command - last_status=${PIPESTATUS[0]} - eval "cat ${_save_log_path}" - status_check $last_status "${command}" "${status_log}" - - done - done - done - else - echo "Does not support hardware other than CPU and GPU Currently!" - fi - done -} -function func_serving(){ - IFS='|' - _python=$1 - _script=$2 - _model_dir=$3 - # pdserving - set_dirname=$(func_set_params "${infer_model_dir_key}" "${infer_model_dir_value}") - set_model_filename=$(func_set_params "${model_filename_key}" "${model_filename_value}") - set_params_filename=$(func_set_params "${params_filename_key}" "${params_filename_value}") - set_serving_server=$(func_set_params "${serving_server_key}" "${serving_server_value}") - set_serving_client=$(func_set_params "${serving_client_key}" "${serving_client_value}") - trans_model_cmd="${python} ${trans_model_py} ${set_dirname} ${set_model_filename} ${set_params_filename} ${set_serving_server} ${set_serving_client}" - eval $trans_model_cmd - cd ${serving_dir_value} - echo $PWD - unset https_proxy - unset http_proxy - for use_gpu in ${web_use_gpu_list[*]}; do - echo ${ues_gpu} - if [ ${use_gpu} = "null" ]; then - for use_mkldnn in ${web_use_mkldnn_list[*]}; do - if [ ${use_mkldnn} = "False" ]; then - continue - fi - for threads in ${web_cpu_threads_list[*]}; do - _save_log_path="${_log_path}/server_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_1.log" - set_cpu_threads=$(func_set_params "${web_cpu_threads_key}" "${threads}") - web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}=${use_gpu} ${web_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} &>${_save_log_path} &" - eval $web_service_cmd - sleep 2s - pipeline_cmd="${python} ${pipeline_py}" - eval $pipeline_cmd - last_status=${PIPESTATUS[0]} - eval "cat ${_save_log_path}" - status_check $last_status "${pipeline_cmd}" "${status_log}" - PID=$! - kill $PID - sleep 2s - ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9 - done - done - elif [ ${use_gpu} = "0" ]; then - for use_trt in ${web_use_trt_list[*]}; do - for precision in ${web_precision_list[*]}; do - if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then - continue - fi - if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then - continue - fi - if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [[ ${_flag_quant} = "True" ]]; then - continue - fi - _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_1.log" - set_tensorrt=$(func_set_params "${web_use_trt_key}" "${use_trt}") - set_precision=$(func_set_params "${web_precision_key}" "${precision}") - web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} &>${_save_log_path} & " - eval $web_service_cmd - sleep 2s - pipeline_cmd="${python} ${pipeline_py}" - eval $pipeline_cmd - last_status=${PIPESTATUS[0]} - eval "cat ${_save_log_path}" - status_check $last_status "${pipeline_cmd}" "${status_log}" - PID=$! - kill $PID - sleep 2s - ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9 - done - done - else - echo "Does not support hardware other than CPU and GPU Currently!" - fi - done -} - -function func_cpp_inference(){ - IFS='|' - _script=$1 - _model_dir=$2 - _log_path=$3 - _img_dir=$4 - _flag_quant=$5 - # inference - for use_gpu in ${cpp_use_gpu_list[*]}; do - if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then - for use_mkldnn in ${cpp_use_mkldnn_list[*]}; do - if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then - continue - fi - for threads in ${cpp_cpu_threads_list[*]}; do - for batch_size in ${cpp_batch_size_list[*]}; do - _save_log_path="${_log_path}/cpp_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log" - set_infer_data=$(func_set_params "${cpp_image_dir_key}" "${_img_dir}") - set_benchmark=$(func_set_params "${cpp_benchmark_key}" "${cpp_benchmark_value}") - set_batchsize=$(func_set_params "${cpp_batch_size_key}" "${batch_size}") - set_cpu_threads=$(func_set_params "${cpp_cpu_threads_key}" "${threads}") - set_model_dir=$(func_set_params "${cpp_infer_model_key}" "${_model_dir}") - set_infer_params1=$(func_set_params "${cpp_infer_key1}" "${cpp_infer_value1}") - command="${_script} ${cpp_use_gpu_key}=${use_gpu} ${cpp_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 " - eval $command - last_status=${PIPESTATUS[0]} - eval "cat ${_save_log_path}" - status_check $last_status "${command}" "${status_log}" - done - done - done - elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then - for use_trt in ${cpp_use_trt_list[*]}; do - for precision in ${cpp_precision_list[*]}; do - if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then - continue - fi - if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then - continue - fi - if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then - continue - fi - for batch_size in ${cpp_batch_size_list[*]}; do - _save_log_path="${_log_path}/cpp_infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log" - set_infer_data=$(func_set_params "${cpp_image_dir_key}" "${_img_dir}") - set_benchmark=$(func_set_params "${cpp_benchmark_key}" "${cpp_benchmark_value}") - set_batchsize=$(func_set_params "${cpp_batch_size_key}" "${batch_size}") - set_tensorrt=$(func_set_params "${cpp_use_trt_key}" "${use_trt}") - set_precision=$(func_set_params "${cpp_precision_key}" "${precision}") - set_model_dir=$(func_set_params "${cpp_infer_model_key}" "${_model_dir}") - set_infer_params1=$(func_set_params "${cpp_infer_key1}" "${cpp_infer_value1}") - command="${_script} ${cpp_use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 " - eval $command - last_status=${PIPESTATUS[0]} - eval "cat ${_save_log_path}" - status_check $last_status "${command}" "${status_log}" - - done - done - done - else - echo "Does not support hardware other than CPU and GPU Currently!" - fi - done -} - -if [ ${MODE} = "infer" ] || [ ${MODE} = "klquant_infer" ]; then - GPUID=$3 - if [ ${#GPUID} -le 0 ];then - env=" " - else - env="export CUDA_VISIBLE_DEVICES=${GPUID}" - fi - # set CUDA_VISIBLE_DEVICES - eval $env - export Count=0 - IFS="|" - infer_run_exports=(${infer_export_list}) - infer_quant_flag=(${infer_is_quant}) - for infer_model in ${infer_model_dir_list[*]}; do - # run export - if [ ${infer_run_exports[Count]} != "null" ];then - save_infer_dir=$(dirname $infer_model) - set_export_weight=$(func_set_params "${export_weight}" "${infer_model}") - set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}") - export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key}" - echo ${infer_run_exports[Count]} - echo $export_cmd - eval $export_cmd - status_export=$? - status_check $status_export "${export_cmd}" "${status_log}" - else - save_infer_dir=${infer_model} - fi - #run inference - is_quant=${infer_quant_flag[Count]} - func_inference "${python}" "${inference_py}" "${save_infer_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant} - Count=$(($Count + 1)) - done -elif [ ${MODE} = "cpp_infer" ]; then - GPUID=$3 - if [ ${#GPUID} -le 0 ];then - env=" " - else - env="export CUDA_VISIBLE_DEVICES=${GPUID}" - fi - # set CUDA_VISIBLE_DEVICES - eval $env - export Count=0 - IFS="|" - infer_quant_flag=(${cpp_infer_is_quant}) - for infer_model in ${cpp_infer_model_dir_list[*]}; do - #run inference - is_quant=${infer_quant_flag[Count]} - func_cpp_inference "${inference_cmd}" "${infer_model}" "${LOG_PATH}" "${cpp_infer_img_dir}" ${is_quant} - Count=$(($Count + 1)) - done - -elif [ ${MODE} = "serving_infer" ]; then - GPUID=$3 - if [ ${#GPUID} -le 0 ];then - env=" " - else - env="export CUDA_VISIBLE_DEVICES=${GPUID}" - fi - # set CUDA_VISIBLE_DEVICES - eval $env - export Count=0 - IFS="|" - #run serving - func_serving "${web_service_cmd}" - - - -else - IFS="|" - export Count=0 - USE_GPU_KEY=(${train_use_gpu_value}) - for gpu in ${gpu_list[*]}; do - use_gpu=${USE_GPU_KEY[Count]} - Count=$(($Count + 1)) - if [ ${gpu} = "-1" ];then - env="" - elif [ ${#gpu} -le 1 ];then - env="export CUDA_VISIBLE_DEVICES=${gpu}" - eval ${env} - elif [ ${#gpu} -le 15 ];then - IFS="," - array=(${gpu}) - env="export CUDA_VISIBLE_DEVICES=${array[0]}" - IFS="|" - else - IFS=";" - array=(${gpu}) - ips=${array[0]} - gpu=${array[1]} - IFS="|" - env=" " - fi - for autocast in ${autocast_list[*]}; do - for trainer in ${trainer_list[*]}; do - flag_quant=False - if [ ${trainer} = ${pact_key} ]; then - run_train=${pact_trainer} - run_export=${pact_export} - flag_quant=True - elif [ ${trainer} = "${fpgm_key}" ]; then - run_train=${fpgm_trainer} - run_export=${fpgm_export} - elif [ ${trainer} = "${distill_key}" ]; then - run_train=${distill_trainer} - run_export=${distill_export} - elif [ ${trainer} = ${trainer_key1} ]; then - run_train=${trainer_value1} - run_export=${export_value1} - elif [[ ${trainer} = ${trainer_key2} ]]; then - run_train=${trainer_value2} - run_export=${export_value2} - else - run_train=${norm_trainer} - run_export=${norm_export} - fi - - if [ ${run_train} = "null" ]; then - continue - fi - - set_autocast=$(func_set_params "${autocast_key}" "${autocast}") - set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}") - set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}") - set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}") - set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}") - set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}") - save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}" - - # load pretrain from norm training if current trainer is pact or fpgm trainer - if [ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]; then - set_pretrain="${load_norm_train_model}" - fi - - set_save_model=$(func_set_params "${save_model_key}" "${save_log}") - if [ ${#gpu} -le 2 ];then # train with cpu or single gpu - cmd="${python} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} " - elif [ ${#gpu} -le 15 ];then # train with multi-gpu - cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1}" - else # train with multi-machine - cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1}" - fi - # run train - eval "unset CUDA_VISIBLE_DEVICES" - eval $cmd - status_check $? "${cmd}" "${status_log}" - - set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}") - # save norm trained models to set pretrain for pact training and fpgm training - if [ ${trainer} = ${trainer_norm} ]; then - load_norm_train_model=${set_eval_pretrain} - fi - # run eval - if [ ${eval_py} != "null" ]; then - set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}") - eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1}" - eval $eval_cmd - status_check $? "${eval_cmd}" "${status_log}" - fi - # run export model - if [ ${run_export} != "null" ]; then - # run export model - save_infer_path="${save_log}" - set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${train_model_name}") - set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_path}") - export_cmd="${python} ${run_export} ${set_export_weight} ${set_save_infer_key}" - eval $export_cmd - status_check $? "${export_cmd}" "${status_log}" - - #run inference - eval $env - save_infer_path="${save_log}" - func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}" - eval "unset CUDA_VISIBLE_DEVICES" - fi - done # done with: for trainer in ${trainer_list[*]}; do - done # done with: for autocast in ${autocast_list[*]}; do - done # done with: for gpu in ${gpu_list[*]}; do -fi # end if [ ${MODE} = "infer" ]; then diff --git a/tests/test_python.sh b/tests/test_python.sh index 2f5fdf4e8dc63a0ebb33c7880bc08c24be759740..39b043b809016b245954a835d37789dcc28d7265 100644 --- a/tests/test_python.sh +++ b/tests/test_python.sh @@ -2,7 +2,14 @@ source tests/common_func.sh FILENAME=$1 -dataline=$(awk 'NR==1, NR==51{print}' $FILENAME) +# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer', 'klquant_infer'] +MODE=$2 + +if [ ${MODE} = "klquant_infer" ]; then + dataline=$(awk 'NR==82, NR==98{print}' $FILENAME) +else + dataline=$(awk 'NR==1, NR==51{print}' $FILENAME) +fi # parser params IFS=$'\n' @@ -84,6 +91,35 @@ benchmark_value=$(func_parser_value "${lines[49]}") infer_key1=$(func_parser_key "${lines[50]}") infer_value1=$(func_parser_value "${lines[50]}") +# parser klquant_infer +if [ ${MODE} = "klquant_infer" ]; then + # parser inference model + infer_model_dir_list=$(func_parser_value "${lines[1]}") + infer_export_list=$(func_parser_value "${lines[2]}") + infer_is_quant=$(func_parser_value "${lines[3]}") + # parser inference + inference_py=$(func_parser_value "${lines[4]}") + use_gpu_key=$(func_parser_key "${lines[5]}") + use_gpu_list=$(func_parser_value "${lines[5]}") + use_mkldnn_key=$(func_parser_key "${lines[6]}") + use_mkldnn_list=$(func_parser_value "${lines[6]}") + cpu_threads_key=$(func_parser_key "${lines[7]}") + cpu_threads_list=$(func_parser_value "${lines[7]}") + batch_size_key=$(func_parser_key "${lines[8]}") + batch_size_list=$(func_parser_value "${lines[8]}") + use_trt_key=$(func_parser_key "${lines[9]}") + use_trt_list=$(func_parser_value "${lines[9]}") + precision_key=$(func_parser_key "${lines[10]}") + precision_list=$(func_parser_value "${lines[10]}") + infer_model_key=$(func_parser_key "${lines[11]}") + image_dir_key=$(func_parser_key "${lines[12]}") + infer_img_dir=$(func_parser_value "${lines[12]}") + save_log_key=$(func_parser_key "${lines[13]}") + benchmark_key=$(func_parser_key "${lines[14]}") + benchmark_value=$(func_parser_value "${lines[14]}") + infer_key1=$(func_parser_key "${lines[15]}") + infer_value1=$(func_parser_value "${lines[15]}") +fi LOG_PATH="./tests/output" mkdir -p ${LOG_PATH} @@ -107,7 +143,7 @@ function func_inference(){ fi for threads in ${cpu_threads_list[*]}; do for batch_size in ${batch_size_list[*]}; do - _save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log" + _save_log_path="${_log_path}/python_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log" set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}") set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}") set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}") @@ -135,7 +171,7 @@ function func_inference(){ continue fi for batch_size in ${batch_size_list[*]}; do - _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log" + _save_log_path="${_log_path}/python_infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log" set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}") set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}") set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}") @@ -158,16 +194,148 @@ function func_inference(){ done } - -# set cuda device -GPUID=$2 -if [ ${#GPUID} -le 0 ];then - env=" " +if [ ${MODE} = "infer" ] || [ ${MODE} = "klquant_infer" ]; then + GPUID=$3 + if [ ${#GPUID} -le 0 ];then + env=" " + else + env="export CUDA_VISIBLE_DEVICES=${GPUID}" + fi + # set CUDA_VISIBLE_DEVICES + eval $env + export Count=0 + IFS="|" + infer_run_exports=(${infer_export_list}) + infer_quant_flag=(${infer_is_quant}) + for infer_model in ${infer_model_dir_list[*]}; do + # run export + if [ ${infer_run_exports[Count]} != "null" ];then + save_infer_dir=$(dirname $infer_model) + set_export_weight=$(func_set_params "${export_weight}" "${infer_model}") + set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}") + export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key}" + echo ${infer_run_exports[Count]} + echo $export_cmd + eval $export_cmd + status_export=$? + status_check $status_export "${export_cmd}" "${status_log}" + else + save_infer_dir=${infer_model} + fi + #run inference + is_quant=${infer_quant_flag[Count]} + func_inference "${python}" "${inference_py}" "${save_infer_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant} + Count=$(($Count + 1)) + done else - env="export CUDA_VISIBLE_DEVICES=${GPUID}" -fi -set CUDA_VISIBLE_DEVICES -eval $env + IFS="|" + export Count=0 + USE_GPU_KEY=(${train_use_gpu_value}) + for gpu in ${gpu_list[*]}; do + use_gpu=${USE_GPU_KEY[Count]} + Count=$(($Count + 1)) + if [ ${gpu} = "-1" ];then + env="" + elif [ ${#gpu} -le 1 ];then + env="export CUDA_VISIBLE_DEVICES=${gpu}" + eval ${env} + elif [ ${#gpu} -le 15 ];then + IFS="," + array=(${gpu}) + env="export CUDA_VISIBLE_DEVICES=${array[0]}" + IFS="|" + else + IFS=";" + array=(${gpu}) + ips=${array[0]} + gpu=${array[1]} + IFS="|" + env=" " + fi + for autocast in ${autocast_list[*]}; do + for trainer in ${trainer_list[*]}; do + flag_quant=False + if [ ${trainer} = ${pact_key} ]; then + run_train=${pact_trainer} + run_export=${pact_export} + flag_quant=True + elif [ ${trainer} = "${fpgm_key}" ]; then + run_train=${fpgm_trainer} + run_export=${fpgm_export} + elif [ ${trainer} = "${distill_key}" ]; then + run_train=${distill_trainer} + run_export=${distill_export} + elif [ ${trainer} = ${trainer_key1} ]; then + run_train=${trainer_value1} + run_export=${export_value1} + elif [[ ${trainer} = ${trainer_key2} ]]; then + run_train=${trainer_value2} + run_export=${export_value2} + else + run_train=${norm_trainer} + run_export=${norm_export} + fi + + if [ ${run_train} = "null" ]; then + continue + fi + + set_autocast=$(func_set_params "${autocast_key}" "${autocast}") + set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}") + set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}") + set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}") + set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}") + set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}") + save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}" + + # load pretrain from norm training if current trainer is pact or fpgm trainer + if [ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]; then + set_pretrain="${load_norm_train_model}" + fi + set_save_model=$(func_set_params "${save_model_key}" "${save_log}") + if [ ${#gpu} -le 2 ];then # train with cpu or single gpu + cmd="${python} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} " + elif [ ${#gpu} -le 15 ];then # train with multi-gpu + cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1}" + else # train with multi-machine + cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1}" + fi + # run train + eval "unset CUDA_VISIBLE_DEVICES" + eval $cmd + status_check $? "${cmd}" "${status_log}" + + set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}") + # save norm trained models to set pretrain for pact training and fpgm training + if [ ${trainer} = ${trainer_norm} ]; then + load_norm_train_model=${set_eval_pretrain} + fi + # run eval + if [ ${eval_py} != "null" ]; then + set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}") + eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1}" + eval $eval_cmd + status_check $? "${eval_cmd}" "${status_log}" + fi + # run export model + if [ ${run_export} != "null" ]; then + # run export model + save_infer_path="${save_log}" + set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${train_model_name}") + set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_path}") + export_cmd="${python} ${run_export} ${set_export_weight} ${set_save_infer_key}" + eval $export_cmd + status_check $? "${export_cmd}" "${status_log}" + + #run inference + eval $env + save_infer_path="${save_log}" + func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}" + eval "unset CUDA_VISIBLE_DEVICES" + fi + done # done with: for trainer in ${trainer_list[*]}; do + done # done with: for autocast in ${autocast_list[*]}; do + done # done with: for gpu in ${gpu_list[*]}; do +fi # end if [ ${MODE} = "infer" ]; then -echo "################### run test ###################" diff --git a/tools/infer/predict_e2e.py b/tools/infer/predict_e2e.py index 8ff279d7437965f725082a9eb1c83e05a7ffc8a8..5029d6059346a00062418d8d1b6cb029b0110643 100755 --- a/tools/infer/predict_e2e.py +++ b/tools/infer/predict_e2e.py @@ -141,7 +141,6 @@ if __name__ == "__main__": img, flag = check_and_read_gif(image_file) if not flag: img = cv2.imread(image_file) - img = img[:, :, ::-1] if img is None: logger.info("error in loading image:{}".format(image_file)) continue