提交 37f22e3e 编写于 作者: T Topdu

add rec_resnet45

上级 c503dc2f
...@@ -27,7 +27,8 @@ def build_backbone(config, model_type): ...@@ -27,7 +27,8 @@ def build_backbone(config, model_type):
from .rec_resnet_fpn import ResNetFPN from .rec_resnet_fpn import ResNetFPN
from .rec_mv1_enhance import MobileNetV1Enhance from .rec_mv1_enhance import MobileNetV1Enhance
from .rec_nrtr_mtb import MTB from .rec_nrtr_mtb import MTB
from .rec_resnet import ResNet31, ResNet45 from .rec_resnet_31 import ResNet31
from .rec_resnet_45 import ResNet45
from .rec_resnet_aster import ResNet_ASTER from .rec_resnet_aster import ResNet_ASTER
from .rec_micronet import MicroNet from .rec_micronet import MicroNet
from .rec_efficientb3_pren import EfficientNetb3_PREN from .rec_efficientb3_pren import EfficientNetb3_PREN
......
...@@ -13,8 +13,7 @@ ...@@ -13,8 +13,7 @@
# limitations under the License. # limitations under the License.
""" """
This code is refer from: This code is refer from:
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/layers/conv_layer.py https://github.com/FangShancheng/ABINet/tree/main/modules
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/backbones/resnet31_ocr.py
""" """
from __future__ import absolute_import from __future__ import absolute_import
...@@ -29,7 +28,7 @@ import paddle.nn.functional as F ...@@ -29,7 +28,7 @@ import paddle.nn.functional as F
import numpy as np import numpy as np
import math import math
__all__ = ["ResNet31", "ResNet45"] __all__ = ["ResNet45"]
def conv1x1(in_planes, out_planes, stride=1): def conv1x1(in_planes, out_planes, stride=1):
...@@ -37,7 +36,7 @@ def conv1x1(in_planes, out_planes, stride=1): ...@@ -37,7 +36,7 @@ def conv1x1(in_planes, out_planes, stride=1):
in_planes, in_planes,
out_planes, out_planes,
kernel_size=1, kernel_size=1,
stride=stride, stride=1,
weight_attr=ParamAttr(initializer=KaimingNormal()), weight_attr=ParamAttr(initializer=KaimingNormal()),
bias_attr=False) bias_attr=False)
...@@ -84,138 +83,10 @@ class BasicBlock(nn.Layer): ...@@ -84,138 +83,10 @@ class BasicBlock(nn.Layer):
return out return out
class ResNet31(nn.Layer): class ResNet45(nn.Layer):
''' def __init__(self, block=BasicBlock, layers=[3, 4, 6, 6, 3], in_channels=3):
Args:
in_channels (int): Number of channels of input image tensor.
layers (list[int]): List of BasicBlock number for each stage.
channels (list[int]): List of out_channels of Conv2d layer.
out_indices (None | Sequence[int]): Indices of output stages.
last_stage_pool (bool): If True, add `MaxPool2d` layer to last stage.
'''
def __init__(self,
in_channels=3,
layers=[1, 2, 5, 3],
channels=[64, 128, 256, 256, 512, 512, 512],
out_indices=None,
last_stage_pool=False):
super(ResNet31, self).__init__()
assert isinstance(in_channels, int)
assert isinstance(last_stage_pool, bool)
self.out_indices = out_indices
self.last_stage_pool = last_stage_pool
# conv 1 (Conv Conv)
self.conv1_1 = nn.Conv2D(
in_channels, channels[0], kernel_size=3, stride=1, padding=1)
self.bn1_1 = nn.BatchNorm2D(channels[0])
self.relu1_1 = nn.ReLU()
self.conv1_2 = nn.Conv2D(
channels[0], channels[1], kernel_size=3, stride=1, padding=1)
self.bn1_2 = nn.BatchNorm2D(channels[1])
self.relu1_2 = nn.ReLU()
# conv 2 (Max-pooling, Residual block, Conv)
self.pool2 = nn.MaxPool2D(
kernel_size=2, stride=2, padding=0, ceil_mode=True)
self.block2 = self._make_layer(channels[1], channels[2], layers[0])
self.conv2 = nn.Conv2D(
channels[2], channels[2], kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2D(channels[2])
self.relu2 = nn.ReLU()
# conv 3 (Max-pooling, Residual block, Conv)
self.pool3 = nn.MaxPool2D(
kernel_size=2, stride=2, padding=0, ceil_mode=True)
self.block3 = self._make_layer(channels[2], channels[3], layers[1])
self.conv3 = nn.Conv2D(
channels[3], channels[3], kernel_size=3, stride=1, padding=1)
self.bn3 = nn.BatchNorm2D(channels[3])
self.relu3 = nn.ReLU()
# conv 4 (Max-pooling, Residual block, Conv)
self.pool4 = nn.MaxPool2D(
kernel_size=(2, 1), stride=(2, 1), padding=0, ceil_mode=True)
self.block4 = self._make_layer(channels[3], channels[4], layers[2])
self.conv4 = nn.Conv2D(
channels[4], channels[4], kernel_size=3, stride=1, padding=1)
self.bn4 = nn.BatchNorm2D(channels[4])
self.relu4 = nn.ReLU()
# conv 5 ((Max-pooling), Residual block, Conv)
self.pool5 = None
if self.last_stage_pool:
self.pool5 = nn.MaxPool2D(
kernel_size=2, stride=2, padding=0, ceil_mode=True)
self.block5 = self._make_layer(channels[4], channels[5], layers[3])
self.conv5 = nn.Conv2D(
channels[5], channels[5], kernel_size=3, stride=1, padding=1)
self.bn5 = nn.BatchNorm2D(channels[5])
self.relu5 = nn.ReLU()
self.out_channels = channels[-1]
def _make_layer(self, input_channels, output_channels, blocks):
layers = []
for _ in range(blocks):
downsample = None
if input_channels != output_channels:
downsample = nn.Sequential(
nn.Conv2D(
input_channels,
output_channels,
kernel_size=1,
stride=1,
weight_attr=ParamAttr(initializer=KaimingNormal()),
bias_attr=False),
nn.BatchNorm2D(output_channels), )
layers.append(
BasicBlock(
input_channels, output_channels, downsample=downsample))
input_channels = output_channels
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1_1(x)
x = self.bn1_1(x)
x = self.relu1_1(x)
x = self.conv1_2(x)
x = self.bn1_2(x)
x = self.relu1_2(x)
outs = []
for i in range(4):
layer_index = i + 2
pool_layer = getattr(self, f'pool{layer_index}')
block_layer = getattr(self, f'block{layer_index}')
conv_layer = getattr(self, f'conv{layer_index}')
bn_layer = getattr(self, f'bn{layer_index}')
relu_layer = getattr(self, f'relu{layer_index}')
if pool_layer is not None:
x = pool_layer(x)
x = block_layer(x)
x = conv_layer(x)
x = bn_layer(x)
x = relu_layer(x)
outs.append(x)
if self.out_indices is not None:
return tuple([outs[i] for i in self.out_indices])
return x
class ResNet(nn.Layer):
def __init__(self, block, layers, in_channels=3):
self.inplanes = 32 self.inplanes = 32
super(ResNet, self).__init__() super(ResNet45, self).__init__()
self.conv1 = nn.Conv2D( self.conv1 = nn.Conv2D(
3, 3,
32, 32,
...@@ -274,7 +145,3 @@ class ResNet(nn.Layer): ...@@ -274,7 +145,3 @@ class ResNet(nn.Layer):
x = self.layer4(x) x = self.layer4(x)
x = self.layer5(x) x = self.layer5(x)
return x return x
def ResNet45(in_channels=3):
return ResNet(BasicBlock, [3, 4, 6, 6, 3], in_channels=in_channels)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册