Layout analysis refers to the regional division of documents in the form of pictures and the positioning of key areas, such as text, title, table, picture, etc. The layout analysis algorithm is based on the lightweight model PP-picodet of [PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection)
Layout analysis refers to the regional division of documents in the form of pictures and the positioning of key areas, such as text, title, table, picture, etc. The layout analysis algorithm is based on the lightweight model PP-picodet of [PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection), including English layout analysis, Chinese layout analysis and table layout analysis models. English layout analysis models can detect document layout elements such as text, title, table, figure, list. Chinese layout analysis models can detect document layout elements such as text, figure, figure caption, table, table caption, header, footer, reference, and equation. Table layout analysis models can detect table regions.
<divalign="center">
<imgsrc="../docs/layout/layout.png"width="800">
...
...
@@ -152,7 +152,7 @@ We provide CDLA(Chinese layout analysis), TableBank(Table layout analysis)etc. d
| [cTDaR2019_cTDaR](https://cndplab-founder.github.io/cTDaR2019/) | For form detection (TRACKA) and form identification (TRACKB).Image types include historical data sets (beginning with cTDaR_t0, such as CTDAR_T00872.jpg) and modern data sets (beginning with cTDaR_t1, CTDAR_T10482.jpg). |
| [IIIT-AR-13K](http://cvit.iiit.ac.in/usodi/iiitar13k.php) | Data sets constructed by manually annotating figures or pages from publicly available annual reports, containing 5 categories:table, figure, natural image, logo, and signature. |
| [TableBank](https://github.com/doc-analysis/TableBank) | For table detection and recognition of large datasets, including Word and Latex document formats |
| [CDLA](https://github.com/buptlihang/CDLA) | Chinese document layout analysis data set, for Chinese literature (paper) scenarios, including 10 categories:Table, Figure, Figure caption, Table, Table caption, Header, Footer, Reference, Equation |
| [CDLA](https://github.com/buptlihang/CDLA) | Chinese document layout analysis data set, for Chinese literature (paper) scenarios, including 10 categories:Text, Title, Figure, Figure caption, Table, Table caption, Header, Footer, Reference, Equation |
@@ -175,7 +175,7 @@ If the test image is Chinese, the pre-trained model of Chinese CDLA dataset can
### 5.1. Train
Train:
Start training with the PaddleDetection [layout analysis profile](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.5/configs/picodet/legacy_model/application/layout_analysis)
@@ -82,8 +82,11 @@ Through layout analysis, we divided the image/PDF documents into regions, locate
We can restore the test picture through the layout information, OCR detection and recognition structure, table information, and saved pictures.
The whl package is also provided for quick use, see [quickstart](../docs/quickstart_en.md) for details.
The whl package is also provided for quick use, follow the above code, for more infomation please refer to [quickstart](../docs/quickstart_en.md) for details.