diff --git a/doc/doc_ch/algorithm_overview.md b/doc/doc_ch/algorithm_overview.md index 0db6c6f7ff97a743d3f947d0588639ba267d9fc4..4da949c2adb9b561c389e60cd98ef379ca66feea 100755 --- a/doc/doc_ch/algorithm_overview.md +++ b/doc/doc_ch/algorithm_overview.md @@ -21,6 +21,7 @@ PaddleOCR开源的文本检测算法列表: - [x] EAST([paper](https://arxiv.org/abs/1704.03155))[1] - [x] SAST([paper](https://arxiv.org/abs/1908.05498))[4] - [x] PSENet([paper](https://arxiv.org/abs/1903.12473v2)) +- [x] FCENet([paper](https://arxiv.org/abs/2104.10442)) 在ICDAR2015文本检测公开数据集上,算法效果如下: |模型|骨干网络|precision|recall|Hmean|下载链接| @@ -39,6 +40,12 @@ PaddleOCR开源的文本检测算法列表: | --- | --- | --- | --- | --- | --- | |SAST|ResNet50_vd|89.63%|78.44%|83.66%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)| +在CTW1500文本检测公开数据集上,算法效果如下: + +|模型|骨干网络|precision|recall|Hmean|下载链接| +| --- | --- | --- | --- | --- | --- | +|FCE|ResNet50_dcn|88.13%|82.60%|85.28%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/det_r50_dcn_fce_ctw_v2.0_train.tar)| + **说明:** SAST模型训练额外加入了icdar2013、icdar2017、COCO-Text、ArT等公开数据集进行调优。PaddleOCR用到的经过整理格式的英文公开数据集下载: * [百度云地址](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (提取码: 2bpi) * [Google Drive下载地址](https://drive.google.com/drive/folders/1ll2-XEVyCQLpJjawLDiRlvo_i4BqHCJe?usp=sharing)