From 30bc3c4396e69a7f2db48acb21291248cab91099 Mon Sep 17 00:00:00 2001 From: huangjun12 <12272008@bjtu.edu.cn> Date: Thu, 28 Apr 2022 06:39:26 +0000 Subject: [PATCH] add sast ch doc --- doc/doc_ch/algorithm_det_sast.md | 84 +++++++++++++++++++++++++++++ doc/doc_en/algorithm_det_sast_en.md | 2 - 2 files changed, 84 insertions(+), 2 deletions(-) create mode 100644 doc/doc_ch/algorithm_det_sast.md diff --git a/doc/doc_ch/algorithm_det_sast.md b/doc/doc_ch/algorithm_det_sast.md new file mode 100644 index 00000000..eafb1680 --- /dev/null +++ b/doc/doc_ch/algorithm_det_sast.md @@ -0,0 +1,84 @@ +# SAST + +- [1. 算法简介](#1) +- [2. 环境配置](#2) +- [3. 模型训练、评估、预测](#3) + - [3.1 训练](#3-1) + - [3.2 评估](#3-2) + - [3.3 预测](#3-3) +- [4. 推理部署](#4) + - [4.1 Python推理](#4-1) +- [5. FAQ](#5) + + +## 1. 算法简介 + +论文信息: +> [A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning](https://arxiv.org/abs/1908.05498) +> Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming +> ACM MM, 2019 + +在ICDAR2015文本检测公开数据集上,算法复现效果如下: + +|模型|骨干网络|配置文件|precision|recall|Hmean|下载链接| +| --- | --- | --- | --- | --- | --- | --- | +|SAST|ResNet50_vd|[configs/det/det_r50_vd_sast_icdar15.yml](../../configs/det/det_r50_vd_sast_icdar15.yml)|91.39%|83.77%|87.42%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)| + + +在Total-text文本检测公开数据集上,算法复现效果如下: + +|模型|骨干网络|配置文件|precision|recall|Hmean|下载链接| +| --- | --- | --- | --- | --- | --- | --- | +|SAST|ResNet50_vd|[configs/det/det_r50_vd_sast_totaltext.yml](../../configs/det/det_r50_vd_sast_totaltext.yml)|89.63%|78.44%|83.66%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)| + + + +## 2. 环境配置 +请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。 + + + +## 3. 模型训练、评估、预测 + +请参考[文本检测训练教程](./detection.md)。PaddleOCR对代码进行了模块化,训练不同的检测模型只需要**更换配置文件**即可。 + + + +## 4. 推理部署 + + +### 4.1 Python推理 +首先将SAST文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例( [模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar) ),可以使用如下命令进行转换: + +```shell +python3 tools/export_model.py -c configs/det/det_r50_vd_sast_icdar15.yml -o Global.pretrained_model=./det_r50_vd_sast_icdar15_v2.0_train/best_accuracy Global.save_inference_dir=./inference/det_sast +``` + +SAST文本检测模型推理,可以执行如下命令: + +```shell +python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_sast/" +``` + +可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下: + +![](../imgs_results/det_res_img_10_sast.jpg) + +**注意**:由于ICDAR2015数据集只有1000张训练图像,且主要针对英文场景,所以上述模型对中文文本图像检测效果会比较差。 + + + +## 5. FAQ + + +## 引用 + +```bibtex +@inproceedings{wang2019single, + title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning}, + author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming}, + booktitle={Proceedings of the 27th ACM International Conference on Multimedia}, + pages={1277--1285}, + year={2019} +} +``` diff --git a/doc/doc_en/algorithm_det_sast_en.md b/doc/doc_en/algorithm_det_sast_en.md index b302e329..e76ddd67 100644 --- a/doc/doc_en/algorithm_det_sast_en.md +++ b/doc/doc_en/algorithm_det_sast_en.md @@ -8,8 +8,6 @@ - [3.3 Prediction](#3-3) - [4. Inference and Deployment](#4) - [4.1 Python Inference](#4-1) - - [4.2 C++ Inference](#4-2) - - [4.3 Serving](#4-3) - [5. FAQ](#5) -- GitLab