未验证 提交 2b8e9b26 编写于 作者: littletomatodonkey's avatar littletomatodonkey 提交者: GitHub

remove name (#4870)

上级 b1693f54
......@@ -25,16 +25,14 @@ __all__ = ["ResNet"]
class ConvBNLayer(nn.Layer):
def __init__(
self,
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
groups=1,
is_vd_mode=False,
act=None,
name=None, ):
act=None):
super(ConvBNLayer, self).__init__()
self.is_vd_mode = is_vd_mode
......@@ -47,19 +45,8 @@ class ConvBNLayer(nn.Layer):
stride=stride,
padding=(kernel_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
self._batch_norm = nn.BatchNorm(
out_channels,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
self._batch_norm = nn.BatchNorm(out_channels, act=act)
def forward(self, inputs):
if self.is_vd_mode:
......@@ -75,29 +62,25 @@ class BottleneckBlock(nn.Layer):
out_channels,
stride,
shortcut=True,
if_first=False,
name=None):
if_first=False):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
act='relu',
name=name + "_branch2a")
act='relu')
self.conv1 = ConvBNLayer(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
stride=stride,
act='relu',
name=name + "_branch2b")
act='relu')
self.conv2 = ConvBNLayer(
in_channels=out_channels,
out_channels=out_channels * 4,
kernel_size=1,
act=None,
name=name + "_branch2c")
act=None)
if not shortcut:
self.short = ConvBNLayer(
......@@ -105,8 +88,7 @@ class BottleneckBlock(nn.Layer):
out_channels=out_channels * 4,
kernel_size=1,
stride=1,
is_vd_mode=False if if_first else True,
name=name + "_branch1")
is_vd_mode=False if if_first else True)
self.shortcut = shortcut
......@@ -125,13 +107,13 @@ class BottleneckBlock(nn.Layer):
class BasicBlock(nn.Layer):
def __init__(self,
def __init__(
self,
in_channels,
out_channels,
stride,
shortcut=True,
if_first=False,
name=None):
if_first=False, ):
super(BasicBlock, self).__init__()
self.stride = stride
self.conv0 = ConvBNLayer(
......@@ -139,14 +121,12 @@ class BasicBlock(nn.Layer):
out_channels=out_channels,
kernel_size=3,
stride=stride,
act='relu',
name=name + "_branch2a")
act='relu')
self.conv1 = ConvBNLayer(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
act=None,
name=name + "_branch2b")
act=None)
if not shortcut:
self.short = ConvBNLayer(
......@@ -154,8 +134,7 @@ class BasicBlock(nn.Layer):
out_channels=out_channels,
kernel_size=1,
stride=1,
is_vd_mode=False if if_first else True,
name=name + "_branch1")
is_vd_mode=False if if_first else True)
self.shortcut = shortcut
......@@ -201,22 +180,19 @@ class ResNet(nn.Layer):
out_channels=32,
kernel_size=3,
stride=2,
act='relu',
name="conv1_1")
act='relu')
self.conv1_2 = ConvBNLayer(
in_channels=32,
out_channels=32,
kernel_size=3,
stride=1,
act='relu',
name="conv1_2")
act='relu')
self.conv1_3 = ConvBNLayer(
in_channels=32,
out_channels=64,
kernel_size=3,
stride=1,
act='relu',
name="conv1_3")
act='relu')
self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
self.stages = []
......@@ -226,13 +202,6 @@ class ResNet(nn.Layer):
block_list = []
shortcut = False
for i in range(depth[block]):
if layers in [101, 152] and block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(
......@@ -241,8 +210,7 @@ class ResNet(nn.Layer):
out_channels=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
shortcut=shortcut,
if_first=block == i == 0,
name=conv_name))
if_first=block == i == 0))
shortcut = True
block_list.append(bottleneck_block)
self.out_channels.append(num_filters[block] * 4)
......@@ -252,7 +220,6 @@ class ResNet(nn.Layer):
block_list = []
shortcut = False
for i in range(depth[block]):
conv_name = "res" + str(block + 2) + chr(97 + i)
basic_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BasicBlock(
......@@ -261,8 +228,7 @@ class ResNet(nn.Layer):
out_channels=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
shortcut=shortcut,
if_first=block == i == 0,
name=conv_name))
if_first=block == i == 0))
shortcut = True
block_list.append(basic_block)
self.out_channels.append(num_filters[block])
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册