diff --git a/test/params.txt b/test/params.txt index 67b2f8f18b09304f68eb9a902225ad6bb6f61436..3fe857d34474c03345d55d02688c8c9da5cf8c35 100644 --- a/test/params.txt +++ b/test/params.txt @@ -12,6 +12,4 @@ rec_batch_size_list: 1|6 gpu_trt_list: True|False gpu_precision_list: fp32|fp16|int8 -epoch: 10 -checkpoints: None diff --git a/test/test.sh b/test/test.sh index 1bc5a8f60cc652ac0fa266c3552f14abe7af6c41..1a40eb25efa995daf6de905e196f596b7908c967 100644 --- a/test/test.sh +++ b/test/test.sh @@ -15,10 +15,14 @@ if [ ${MODE} = "lite_train_infer" ];then cd ./train_data/ && tar xf icdar2015_lite.tar && ln -s ./icdar2015_lite ./icdar2015 cd ../ + epoch=10 + eval_batch_step=10 elif [ ${MODE} = "whole_train_infer" ];then rm -rf ./train_data/icdar2015 wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar cd ./train_data/ && tar xf icdar2015.tar && cd ../ + epoch=300 + eval_batch_step=200 else echo "Do Nothing" fi @@ -52,8 +56,8 @@ gpu_trt_list=$(func_parser "${lines[10]}") gpu_precision_list=$(func_parser "${lines[11]}") img_dir="./train_data/icdar2015/text_localization/ch4_test_images/" # train superparameters -epoch=$(func_parser "${lines[12]}") -checkpoints=$(func_parser "${lines[13]}") +#epoch=$(func_parser "${lines[12]}") +#checkpoints=$(func_parser "${lines[13]}") for train_model in ${train_model_list[*]}; do @@ -99,7 +103,7 @@ for train_model in ${train_model_list[*]}; do fi # dataset="Train.dataset.data_dir=${train_dir} Train.dataset.label_file_list=${train_label_file} Eval.dataset.data_dir=${eval_dir} Eval.dataset.label_file_list=${eval_label_file}" save_log=${log_path}/${model_name}_${slim_trainer}_autocast_${auto_cast}_gpuid_${gpu} - echo ${python} ${launch} ${trainer} -c ${yml_file} -o Global.auto_cast=${auto_cast} Global.save_model_dir=${save_log} Global.use_gpu=${use_gpu} Global.epoch=${epoch} + ${python} ${launch} ${trainer} -c ${yml_file} -o Global.epoch_num=${epoch} Global.eval_batch_step=${eval_batch_step} Global.auto_cast=${auto_cast} Global.save_model_dir=${save_log} Global.use_gpu=${use_gpu} ${python} ${export_model} -c ${yml_file} -o Global.pretrained_model=${save_log}/best_accuracy Global.save_inference_dir=${save_log}/export_inference/ if [ "${model_name}" = "det" ]; then export rec_batch_size_list=( "1" )